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Abstract

Innovation is central to economic growth, but so is the di↵usion of new knowledge.

Such is the finding of recent macro papers that model the interaction between these

two forces. Absent in this literature are three key elements that are the focus of this

paper. First, we consider the role of frictions in matching innovators and imitators

mediating the process of knowledge transmission. Second, we introduce the possibility

of creative destruction, upon which event the innovator is replaced by the imitator.

Third, while most of the recent literature has focused on the case where all surplus

from knowledge transmission is captured by the imitators, we consider all ranges of

possible shares that the innovators and imitators can appropriate and their impact on

growth. In a simple one period model, we derive a modified Hosios condition for the

optimal share when firms are ex-ante homogeneous. But we also find that as the degree

of heterogeneity increases, the share of innovators must decrease to maximize growth.

Our calibrated dynamic model suggests that the optimal share of surplus innovators

appropriate should be in the medium range.
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1 Introduction

Knowledge creation and di↵usion are the main forces behind economic growth. Starting

with Lucas (2009), a series of recent papers in the macro literature have emphasized the

role of di↵usion as a contagion process where lagging firms learn the knowledge of more

advanced firms in random matching. Moll and Lucas (2014) and Perla and Tonetti (2014)

are examples. It is so assumed that the surplus generated is appropriated completely by the

firm on the receiving end. In contrast, many forms of knowledge transmission involve some

degree of appropriation by the transferring firms, such as technology licensing deals. Our

paper captures this feature by modeling knowledge transfer as a bargaining problem between

these two parties. More explicitly, we consider the role of the Nash bargaining weights in

this problem and their impact on knowledge creation and transmission.

Intellectual property rights are a critical part of innovation policy. There is a long liter-

ature arguing in favor or against strong patent rights, trading o↵ incentives for innovation

and its costs. In our setting, stronger patent rights are associated with a higher bargaining

weight for innovators. Our paper considers the impact this has on both, incentives for inno-

vation and learning and its overall e↵ect on economic growth. We explore this theoretically

and quantitatively calibrating a model of innovation and knowledge di↵usion.

An increase in the bargaining weight of the innovator, and thus its share of the surplus,

has two opposing e↵ects: 1) it directly encourages innovation; and 2) it discourages learning.

In the presence of congestion a la Mortensen and Pissarides (1994), this in turn reduces the

contact rate for innovators (increases for imitators), having a negative e↵ect on innovation.

At one extreme, when all surplus is appropriated by the firm transferring knowledge, thus

holding up the learning firm, there are no incentives for learning and knowledge transfer

disappears. At the other extreme, when the learning firm appropriates all surplus, innovation

occurs only for its direct productive benefit to the innovator who disregards the value created

by knowledge transfer.

Intellectual property rights play a dual role. On the one hand, they allow innovators to

appropriate some of the rents from follow up firms that use or build up on these innovations.

On the other hand, they can discourage competing innovations that follow up and destroy

some of the rents obtained by the original innovator, i.e. creative destruction. The relative

importance of each of these channels depends on the share of creative destruction as a fraction

of total innovation. As we find, this plays an important role when considering the impact of

intellectual property rights on economic growth.

In a simple one period model when all firms are ex-ante identical we show that the

maximum level of growth is achieved at an intermediate bargaining weight for innovators
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that is the one suggested by the well-known Hosios condition (Hosios (1990)) in models

of random matching.

1

When firms di↵er in their initial level of productivity, those above a

certain threshold choose to innovate while those below choose to learn from the innovators.

We find that as ex-ante heterogeneity increases, the optimal bargaining weight for innovators

decreases and becomes zero when heterogeneity is su�ciently high. We also find that the

optimal bargaining weight increases with the share of creative destruction, measured by the

extent to which adoption by a learning firm decreases the original innovator’s value.

Heterogeneity matters for two reasons. Firstly, it corresponds to a component of knowl-

edge that is exogenous to innovation e↵orts of a firm. When the importance of this component

overwhelms the one resulting from innovation e↵ort, stronger IP modeled here as higher in-

novator share of surplus gives rents to innovators without a↵ecting much their innovation

or participation decisions, while discouraging imitation and learning at the same time. Sec-

ondly, with ex-ante heterogeneity the marginal type (the one at the threshold) represents a

less valuable match for imitators to learn from. Thus, the positive external e↵ect on imitators

is smaller, while the negative crowding out e↵ect on innovators is the same.

We explore quantitatively the question in a dynamic general equilibrium scenario that is

a small variation of the basic setup in Benhabib, Perla and Tonetti (2017) with the addition

of matching congestion. There is a fixed set of agents that can either operate as productive

firms or learn from others. Firm’s productivity follows a Brownian motion where drift is

a function of costly innovation e↵ort and volatility is given. Learning agents contact a

randomly selected firm at a rate that is determined via a matching function. Upon meeting,

the two agents split the value of the learning firm according to Nash bargaining. With some

probability, the original innovator loses the value of its innovation and goes back to join the

pool of learning agents. This parameter measures the relative share of creative destruction.

The model is calibrated to match a series of aggregate moments.

2

Given parameter

values, we calculate the share of surplus that maximizes growth. As in our simple model,

we find that as volatility becomes large and heterogeneity increases, the optimal innovator

share of surplus decreases. In our preliminary calibration, where volatility is chosen to match

moments of the size distribution of firms, the optimal share is in the medium range. Given

1The intuition for this result is as follows. Holding fixed the innovation decision µ, the Hosios condition
guarantees that the equilibrium delivers the optimal fraction of innovators in the population, i.e. the one that
maximizes total surplus. What is more surprising, is that total surplus when also taking into account the
equilibrium choice of µ is also maximized at this point. The intuition behind this result is that in equilibrium
innovator profits from innovation are proportional to total surplus, when surplus is maximized so are the
total (direct and indirect) incentives for innovation.

2These moments include: aggregate growth rate, interest rate, size distribution of firms, volatility of firm
size, share of creative destruction (as given by Garcia-Macia, Hsieh and Klenow (2019)) and the ratio of
public to private returns to innovation (as given by Bloom, Schankerman and Van Reenen (2013)).
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these parameter values, total growth falls with innovator share mostly because of the severe

drop in knowledge transmission, as the fraction of learning firms decreases dramatically with

the bargaining weight of innovators. The optimal fraction of innovators is also sensitive to

parameters in the matching function. As we vary the elasticity of the matching function

from zero to one, the optimal fraction of innovators also goes from zero to one. This shows

the importance of matching frictions in the process of knowledge transfer when considering

the optimal assignment of intellectual property rights.

1.1 Related Literature

Our paper builds on several strands of literature, including the papers on knowledge di↵usion,

patent policy and innovation, and matching frictions, as well as recent papers attempting to

measure returns to innovation and the extent of creative destruction.

Kortum (1997) considers a setting where firms sample from a fixed distribution of ideas,

recognizing that a key to sustained exponential growth is that the stationary part of this

distribution has a Pareto upper tail. In Luttmer (2007), this distribution is endogenously

generated in the steady state, as entrants learn from the distribution of incumbent’s pro-

ductivity. A similar mechanism is developed in Lucas (2009) where all firms exogenously

learn from others, where the initial distribution of knowledge has a Pareto tail.

3

Moll and

Lucas (2014) and Perla and Tonetti (2014) endogenize the allocation of resources devoted to

learning. In these models, resources can be allocated either to production or learning.

Our model builds on K

¨

onig, Lorenz and Zilibotti (2016) and Benhabib et al. (2017),

where firms make an optimal choice between innovation and imitation. In a recent addition

to their paper (contemporaneous to ours), Benhabib et al. (2017) consider briefly the role

of bargaining. Our analysis di↵ers in several respects: First, we focus on the question of

intellectual property protection and derive explicitly the bargaining weights from the strength

of patent enforcement. Second , we focus on the relationship between patent enforcement and

growth, and how the growth maximizing policy is a↵ected by several characteristics of the

environment, including innovator heterogeneity, matching frictions, and creative destruction.

The latter two characteristics are new features we introduce and absent in their model.

We borrow from recent papers that quantify the technology and product market spillover

e↵ects of innovation. Mapping our model to their framework, we use Bloom et al. (2013)’s

calculation of the social versus private returns to innovation. Similarly, we use the importance

of creative destruction measured by Garcia-Macia et al. (2019).

3A class of hybrid models where firm productivity can evolve from the sampling of an exogenous distribu-
tion (as in Kortum (1997)) and the distribution of other firms’ knowledge (as in Luttmer (2007) and Lucas
(2009)) can be found in Alvarez, Buera and Lucas (2008) and Buera and Oberfield (Forthcoming).
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Our insights of the optimal bargaining weights relate to the literature on matching fric-

tions in random search. Using an alternative protocol as opposed to Nash bargaining, our

expression for the optimal weights resembles Hosios (1990)’s condition, by adjusting for the

creative destruction events. In the presence of heterogeneity, however, this condition fails as

pointed out by Shimer and Smith (2001).

2 One-Period Model

This section provides a simple one-period model to illustrate how the bargaining weight

trades o↵ incentives for innovation versus imitation, considering the possibilities of replace-

ment of innovators by imitators as well as congestion in knowledge di↵usion. We first study

the case in which firms are homogenous before moving on to heterogeneous firms.

2.1 Homogenous Firms

The economy lasts for one period and consists of a unit mass of firms. We consider a pure

endowment economy, where the firm’s output is equal to its productivity. The firms produce

identical goods. They are initially endowed with the same productivity z = 1, which can be

improved through either innovation or imitation.

Timing of events. A two-stage game takes place. In the first stage, firms choose whether

to innovate or wait to imitate. If they decide to innovate, they can improve their productivity

to µz at a cost of c (µ) z. The innovation cost function is convex and strictly increasing in

the innovation intensity µ. The proportion of firms that invest in innovation is denoted by

↵, and the remaining 1� ↵ proportion wait to imitate.

In the second stage, the innovators and the imitators search and match randomly in

the market for knowledge transfer. The market is two-sided, with innovators and imitators

searching on each side. The aggregate number of matches is given by a matching function

M (↵, 1� ↵), which is assumed to be homogenous of degree one, once di↵erentiable, and

increasing in both arguments. Upon being matched, the imitator can acquire the innovator’s

technology through a knowledge transfer by paying a licensing fee.

4

With probability ✓ 2
[0, 1] the knowledge transfer results in a creative destruction of the innovator firm, in which

event the innovator is replaced by the imitator. To determine the amount of licensing fee,

they bargain over the imitator’s surplus from the knowledge transfer. The bargaining weight

4We assume that the imitator fully learns the innovator’s knowledge . One could generalize it to a setting
of limited learning, as in the mergers and acquisition model by David (2017). The newly acquired knowledge
depends on not only the innovator’s level but also the imitator’s own level.

4



for the transferring party is � 2 [0, 1]. That is, the transferring firm appropriates � share of

the surplus and the learning firm appropriates 1� � share.

At the end of second stage, the firms produce. Firms that have acquired the new tech-

nology produce output µ and the rest of the firms produce zero output.

Matching and congestion. The matching function in the market for knowledge transfer

introduces the possibility of congestion in learning. If there are more imitators searching for

better technologies to copy, it becomes more di�cult for them to find such opportunities.

To illustrate why congestion matters, consider a special case in which the probability of

meeting an innovator is constant, and hence independent of the composition of imitators and

innovators, as in the knowledge di↵usion models by Perla and Tonetti (2014) and Buera and

Oberfield (Forthcoming). For example, if the matching function is M (↵, 1� ↵) = � (1� ↵),

there is no congestion on the imitator’s side, while the innovator’s side is fully congested. An

infinitesimally small amount of innovators are needed to spread the knowledge to the whole

economy.

Bargaining weights. The innovator’s bargaining weight represents the enforcement prob-

ability under the intellectual property rights regime. This interpretation can be illustrated

through a simple game, which goes as follows. Upon being matched, the innovator makes a

take-it-or-leave-it o↵er to the imitator, asking for a licensing fee t for the technology trans-

fer. If the imitator does not accept and uses the technology without a license, there is a

probability � of being caught. Once caught, the imitator is then

not allowed to use the innovator’s technology. Suppose the imitator’s surplus from the

technology transfer is S. The imitator has an incentive-compatibility constraint:

S � t � (1� �)S,

which implies that the innovator would ask for t = �S and the imitator would accept.

Stronger intellectual property rights protection in favor of innovators leads to stronger bar-

gaining power of innovators, which allows them to appropriate more rents from knowledge

di↵usion.

5

5The bargaining protocol di↵er from the alternating o↵ers in Nash bargaining. With Nash bargaining,
the innovator and imitator would split the social surplus from the knowledge transfer. In contrast, in the
enforcement threat game here, the firms split the imitator’s surplus from knowledge transfer.
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Competitive equilibrium. In the decentralized economy, in stage one, the innovators

choose innovation intensity that maximizes their net value:

max

µ


1 + (� � ✓)

M (↵, 1� ↵)

↵

�
µ� c (µ) ,

where the payo↵ of innovation comes in two parts: a direct payo↵ through increased output,

µ, and an indirect payo↵ through knowledge transfer net of the losses from the creative

destruction, (� � ✓) M
↵ µ. The optimality condition for the innovation intensity is such that

the marginal private payo↵ equals marginal cost,

1 + (� � ✓)
M (↵, 1� ↵)

↵
= c0 (µ) . (1)

As firms are ex-ante identical, we obtain an indi↵erence condition where the values of

innovators and non-innovators are equal. That is, the value appropriated by the imitators

equals the combined payo↵ from innovation minus the cost of innovation:

(1� �)
M (↵, 1� ↵)

1� ↵
µ =


1 + (� � ✓)

M (↵, 1� ↵)

↵

�
µ� c (µ) . (2)

Optimal appropriation. The bargaining weight plays a key role in trading o↵ the in-

centives for innovation and di↵usion. First, as characterized in equation (1), the bargaining

weight exerts a direct holdup e↵ect on investment through the extent of knowledge appro-

priability, or the intensive margin of innovation. A higher bargaining weight of innovators

encourages innovation and discourages learning. More drastically, at one extreme, when all

surplus is appropriated by the firm transferring knowledge, thus holding up the learning

firm, there are no incentives for learning and knowledge transfer disappears; at the other ex-

treme, when the learning firm appropriates all surplus, innovation occurs only for its direct

productive benefit to the innovator who disregards the value created by knowledge transfer.

Second, in equation (2), the bargaining weight indirectly a↵ects the equilibrium fraction of

innovators and imitators and thus the matching rates of both groups, or the extensive margin

of innovation and di↵usion. A higher � increases the fraction of innovators and thus reduces

the contact rate for innovators and increases that for imitators. The second e↵ect is similar

to the standard appropriability concern and congestion externality of random search in the

labor market search literature.

The investment and matching aspects described above imply that the equilibrium alloca-

tion is suboptimal compared to the first-best. When considering the incentives for innovation

alone, the innovator should appropriate the entire transfer surplus � = 1, as it aligns the
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innovator’s marginal private value of innovation to the marginal social value. When con-

sidering the external e↵ects on matching alone, the bargaining weight should be such that

the external congestion e↵ects are equalized. As is well known from Hosios (1990), this is

achieved when innovating firms appropriate a share of the transfer surplus that is equal to

the elasticity of the matching function with respect to the fraction of innovators. It follows

that the assignment of bargaining weights cannot simultaneously align the private values of

investment in innovation and search with their social values.

It is true that with a su�ciently rich set of instruments, such as direct subsidies to

innovation and strength of patent protection (interpreted here as the bargaining weights),

the first-best allocation can be supported. However, as discussed in the patent literature,

direct subsidies might be di�cult to implement when innovation is not directly observed.

Following this literature, we ask in this paper what can be achieved when the planner has

at its disposal only the assignment of bargaining weights. These weights � are chosen to

maximize net output:

Y = ↵ [µ� c (µ)] +M (1� ✓)µ, (3)

subject to innovation and imitation decisions, µ and ↵, satisfying firms’ investment optimality

condition (1) and the indi↵erence condition (2).

Proposition 1. With ex-ante homogenous firms, the optimal bargaining weight is,

�⇤
= (1� ✓)M

1

↵

M
+ ✓. (4)

The optimal bargaining weight in equation (4) resembles Hosios (1990)’s condition, by

adjusting for the creative destruction probability. The intuition for this result is as follows.

Holding fixed the innovation decision µ, the condition guarantees that the equilibrium delivers

the optimal fraction of innovators in the population, i.e. the one that maximizes the amount

of knowledge transfer M (↵, 1� ↵). More surprisingly, when also taking into account the

equilibrium choice of µ, the total surplus is also maximized at this point. This is because

in equilibrium the innovator’s profit from innovation is proportional to total surplus, when

surplus is maximized so are the total (direct and indirect) incentives for innovation.

Introducing matching congestion in knowledge di↵usion matters and is crucial for these

results. Again it is instructive to consider an economy with no congestion on the imitator’s

side where the chance of finding an innovator is independent of the ratio of innovators

to imitators, so the total amount of match is M (↵, 1� ↵) = � (1� ↵).6 According to

equation (4), the optimal bargaining weight �⇤
would be approaching ✓, just compensating

6This special case corresponds to the knowledge di↵usion process in Perla and Tonetti (2014), Perla,
Tonetti and Waugh (2015), and Benhabib et al. (2017).
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the innovators for the losses from creative destruction. The intuition is obvious: innovation

is costly, yet only an infinitesimally small fraction of innovators are needed to spread the

knowledge to the whole economy.

2.2 Heterogenous Firms

To account for the existence of substantial knowledge di↵erence in the economy, we extend

the one-period model to include ex-ante heterogeneity in knowledge. This will also help us to

interpret our subsequent results in the dynamic model, where the heterogeneous level of firm

productivity are endogenous outcome of innovation and di↵usion. We assume that the unit

mass of firms have initial productivity z, following a distribution with cumulative density

function F (z).

In equilibrium, there is selection of more productive firms into innovation activities and

less productive ones into imitation. The productivity of the marginal firm who is indi↵erent

between innovating or copying is denoted by productivity z⇤. The fraction of innovators is

↵ = 1� F (z⇤). The marginal firm is characterized by the indi↵erence condition:

(1� �)
M (↵, 1� ↵)

1� ↵

Z

z⇤
zdF (z)µ =

⇢
1 + (� � ✓)

M (↵, 1� ↵)

↵

�
µ� c (µ)

�
z⇤. (5)

The net output is:

Y =

Z

z⇤
zdF (z) [µ� c (µ)] +M (1� ✓)

1

↵

Z

z⇤
zdF (z)µ.

Note that the social surplus from knowledge di↵usion per match depends not only on the

extent of investment µ but also the average innovator

1

↵

R
z⇤ zdF (z).

Proposition 2. With ex-ante heterogenous firms, the optimal bargaining weight is lower

than with homogenous firms,

�⇤ < (1� ✓)M
1

↵

M
+ ✓.

Heterogeneity contributes to a lower optimal bargaining weight because there is more

social value from knowledge di↵usion to be gathered. In addition to facilitating the di↵u-

sion of new knowledge created, a lower bargaining weight also helps to capture the gains

from bridging the existing knowledge gaps, by having more imitators searching for better

technologies. It can be identified to the component of knowledge di↵usion exogenous to the

innovation e↵orts of a firm. When the importance of this component overwhelms the one

resulting from innovation e↵ort, stronger intellectual property rights modeled here as higher
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Figure 1: Optimal bargaining weight with heterogeneous firms
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Notes: The matching function is M (↵, 1� ↵) = �↵! (1� ↵)!, with � = 0.1 and ! = 0.5. The innovation
cost function is c (µ) = �

"+1µ
"+1, with � = 1 and " = 1. The creative destruction probability is ✓ = 2/3.

� gives rents to innovators without a↵ecting much their innovation or participation decisions,

while discouraging imitation and learning at the same time.

To be precise, with ex-ante heterogeneity, the marginal firm (the one at the threshold)

represents a less valuable match for imitators to learn from than the average innovating firms.

Thus, the positive external e↵ect on imitators is smaller, while the negative crowding out

e↵ect on innovators is the same. The Hosios condition for homogeneous firms balances out

these two e↵ects to get the optimal fraction of innovators. Since positive externalities are

smaller with heterogeneity, less innovators will be optimal and this is induced in equilibrium

by giving innovators a smaller bargaining weight.

Firms in the tail. To see exactly how heterogeneity changes the optimal bargaining

weight, we construct one simple numerical example. This example also relates to the re-

sults in our dynamic model. The ex-ante knowledge level follows a Pareto distribution,

F (z) = 1�
⇣z
z

⌘⇣

, 8z 2 [z,1) where ⇣ > 1.

The shape parameter ⇣ captures the extent of heterogeneity present in the economy. A

higher ⇣ implies a thinner Pareto tail in productivity distribution and less heterogeneity.

As ⇣ approaches infinity, heterogeneity would vanish and the economy reverts back to the

ex-ante homogeneous case in the previous section.

The matching function has a constant elasticity, ! = M
1

↵
M = 0.5. Figure 1 shows the

level of optimal bargaining power that solves the planner’s problem as we vary the extent of
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heterogeneity. Overall, more heterogeneity leads to lower optimal bargaining power. When

there is su�cient heterogeneity, in this example ⇣ below somewhere close to 1, the optimal

bargaining weight is zero. If the gain from di↵usion of existing knowledge is large enough, as

illustrated in the numerical example, the optimal bargaining weight of innovators is pushed

all the way to zero. When heterogeneity vanishes, i.e. ⇣ ! 1, the optimal bargaining weight

converges to the one implied by condition (4).

3 Dynamic Model

We now build a dynamic model which features the same ingredients of knowledge creation

and di↵usion as the one-period model. This dynamic model di↵ers from the static one in the

sense that the extent of knowledge heterogeneity in the economy is an endogenous outcome

of innovation and di↵usion. It also allows us to carry out quantitative assessment of the

optimal level of appropriation.

3.1 Environment

[there is some redundancy in the discussion]

Time is infinite and continuous. The economy consists of a continuum measure-one of

firms. The firms produce identical goods and are characterized by their level of productivity

Z. We consider a pure endowment economy, where firm output is equal to its productivity.

7

The log productivity is denoted by z ⌘ log (Z). At time t, the distribution of firms follows

a cumulative density function F (z, t). There is a representative household with preferences

for consumption Z 1

0

e�⇢t
log (C (t)) dt.

The implied interest rate in this economy is r (t) = ⇢+ C 0
(t) /C (t).

Firm productivity follows the stochastic process:

dz = i (µdt+ � (µ) dB) + (1� i) (z̃ � z) dJ, (6)

where i = 1 indicates the decision to innovate and i = 0 the decision to imitate. An ↵ (t)

fraction of firms innovate. The contact rate for an innovator to meet an imitator is q (↵ (t)) ⌘
M (1, (1� ↵ (t)) /↵ (t)). The contact rate for imitators is p (↵ (t)) ⌘ M (↵ (t) / (1� ↵ (t)) , 1).

The innovating firm incurs a flow cost of innovation, c (µ) exp (z), proportional to its produc-

tivity. The imitating firm has a Poisson rate of meeting firms with some superior technology

7If we were to introduce inputs other than technology in production, the results would not change.
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z̃ and acquiring that technology, in which case its productivity jumps upwards, i.e. dJ = 1.

With probability ✓, a knowledge transfer results in a creative destruction event, upon which

the innovator is replaced by the imitator.

Firm’s endogenous innovation decision a↵ects not only the expected level but also poten-

tially the variance of productivity improvement. We capture the e↵ect on the variance with

a flexible specification of the Brownian motion, which has a standard deviation � (µ) as a

function of innovation intensity µ. While we maintain the general notation in the model, we

study two particular innovation processes. The first innovation process is a fixed-volatility

process, represented by a standard Brownian motion with a standard deviation �. This

model of innovation is commonly used in the literature, for example, in the continuous time

model of Luttmer (2007) or, equivalently, in the discrete time model of ?. We introduce

an alternative scalable-volatility innovation process, represented by a Brownian motion with

standard deviation �
p
µ. To micro-found this process, we consider firm innovation as experi-

mentation through a set of risky projects. Let µ denote the number of projects carried out at

a given point of time. Each project generates some incremental productivity improvement

with outcome drawn independently from a normal distribution N (1, �2

). Together the µ

projects generate productivity improvement drawn from a normal distribution N (µ, �2µ).

3.2 Firm’s Problem

Consider the problem of a firm with productivity z at time t. The firm decides whether

to innovate or imitate, weighting the values it can obtain by innovating, V i
(z, t), and by

copying, V c
(t):8

max

�
V i

(z, t) , V c
(t)
 
.

Since more productive firms has an advantage in and benefit more from transferring knowl-

edge, there exists a threshold z (t) such that the firms above the threshold choose to innovate

and those below the threshold imitate. The innovation threshold z (t) satisfies the following

value matching and smooth pasting conditions:

V c
(t) = V i

(z (t) , t) , (7)

0 = V i
z (z (t) , t) . (8)

8By assuming that the imitators are idle in production, their value function doesn’t depend on their
knowledge level. Conversely, if we were to assume that imitators also produce, their value function will
depend on their knowledge level; the marginal innovator is di↵erent from the average innovator. We discuss
later that, quantitatively, this distinction is important.
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The value matching condition is the indi↵erence condition such that the firms at the innova-

tion threshold obtain the same value from either innovating or copying. The smooth pasting

condition is necessary here since firms at the innovation threshold are moving backward

relative to the threshold over time [better argument?]. The measure of innovators satisfies

↵ (t) = 1� F (z (t) , t) . (9)

The innovating firm’s value function, V i
(z, t), satisfies the Hamilton–Jacobi–Bellman

(HJB) equation:

r (t)V i
(z, t) = max

µ

�
exp (z) + q (↵ (t)) (� � ✓)

�
V i

(z, t)� V c
(t)
�

�c (µ) exp (z) + µV i
z (z, t) +

1

2

� (µ)2 V i
zz (z, t) + V i

t (z, t)

�
. (10)

In equation (10), the flow payo↵ to the innovating firm on the right-hand side of the first

line consists of two parts: a direct payo↵ from production profit exp (z) and an indirect

payo↵ through knowledge transfer. The expected flow payo↵ from knowledge transfer is

� fraction of the imitator’s surplus from knowledge transfer, taking into the probability of

meeting an imitator q (↵ (t)), net of the change in its value if the innovator is replaced. The

first three terms in the second line capture the innovation cost and the change in value due

to productivity innovations. The innovation intensity decision rule µ (z, t) is such that the

marginal cost of innovation is equal to the marginal benefit from productivity improvement:

c0 (µ (z, t)) exp (z) = V i
z (z, t) + � (µ (z, t)) �0

(µ (z, t))V i
zz (z, t) . (11)

The imitating firm’s value function, V c
(z, t), satisfies the HJB equation:

r (t)V c
(t) = p (↵ (t)) (1� �)

�
E
⇥
V i

(z̃, t) |z̃ > z (t)
⇤
� V c

(t)
�
+ V c

t (t) . (12)

In equation (12), the flow payo↵ also consists of two parts: a direct payo↵ from profit exp (z)

and an indirect payo↵ from retained surplus after paying licensing fees. The payo↵ from

imitation is equal to the probability of meeting an innovator, p (↵ (t)), times the 1 � �

fraction of the imitator’s surplus upon a meeting.
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3.3 Equilibrium Definition

The distribution of firm productivity evolves over time according to the following Kolmogorov

Forward (KF) equation: 8z � z (t),

ft (z, t) = q (↵ (t)) (1� ✓) f (z, t)� @ (µ (z, t) f (z, t))

@z
+

1

2

@2

�
� (µ (z, t))2 f (z, t)

�

@z2
. (13)

This distribution is shaped by forces of innovation and di↵usion. On the one hand, there is an

inflow of firms from the left to the right of the innovation threshold, as they acquire superior

technology and jump ahead in the knowledge scale. On the other hand, the innovating firms

are advancing along the knowledge scale at the speed of their innovation intensity µ (z, t).

Definition 1 (Competitive Equilibrium). A competitive equilibrium consists of value func-

tions {V i
(z, t) , V c

(t)}, innovation decision rule µ (z, t), innovation threshold z (t), fraction

of innovators ↵ (t), and productivity distribution F (z, t), given the initial productivity dis-

tribution F (z, 0), such that equations (7) to (13) are satisfied.

Lemma 1 (Innovation Intensity). Firm innovation intensity µ (z, t) increases in the level of

productivity z and converges to an upper bound

lim

z!1
µ (z, t) = µ̄ (t) .

This lemma follows from the observation that the firm’s problem is an optimal stopping

problem. The further away the innovator is from the innovation threshold z (t), the longer it

is expected to benefit from improved productivity before switching to the side of imitators.

Hence, the innovation intensity µ (z, t) increases with the innovator’s productivity z. At the

extreme, for firms on the knowledge frontier, i.e., z ! 1, the distance to the innovation

threshold becomes irrelevant, and the optimal stopping point is no longer a concern. This

feature is also reflected in the HJB equation (10) for the innovator’s value function: the

nonlinear part due to the outside option of the imitating firms, V c
(t), becomes infinitely

small in comparison to the direct payo↵.

3.4 Balanced Growth Path

We focus on the balanced growth path (BGP) along which the economy grows at a constant

rate g. The aggregate consumption C 0
(t) /C (t) = g. The value functions of innovators and
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imitators satisfy

V i
(z + gt, t) = exp (gt)V i

(z) (14)

V c
(z + gt, t) = exp (gt)V c

(z) , (15)

and the productivity distribution can be transformed into a stationary one,

f (z + gt, t) = f (z) . (16)

The innovation threshold also grows at rate g, z (t) = exp (gt) z. The innovation intensity

converges to a constant upper bound, µ̄ (t) = µ̄.

Assumption 1. The preference and technology parameters satisfy

⇢ > �� (µ̄)
p
2q (↵) + (� � ✓) q (↵) +

1

2

� (µ̄)2 .

Assumption 1 states that agents discount future consumption at a su�ciently high rate.

This assumption is merely to ensure that, along the BGP, firm value functions are bounded

and hence well-defined. In the quantitative section, the assumption is guaranteed given that

the contact rate q (↵) and the standard deviation � (µ̄) are small in magnitude.

Assumption 2. The initial productivity distribution F (z, 0) has a bounded support.

Under this assumption, the initial set of knowledge in the economy is bounded and

limited. Therefore creation of new knowledge through innovation is essential to generate

sustained economic growth. Otherwise, absent any innovative e↵ort, the economy would

eventually converge to the highest productivity level in the initial economy as a consequence

of knowledge di↵usion.

On a technical level, this assumption is a su�cient condition to ensure the existence of

a unique BGP, as in Luttmer (2007). Otherwise there can potentially exist a continuum of

equilibria associated with di↵erent growth rates and stationary distributions. For example,

Benhabib et al. (2017) distinguishes between a unique growth path and hysteresis, depending

on whether the initial productivity distribution has a bounded support. Here we consider

an economy with a unique GBP.

Proposition 3 (BGP). Under Assumption 1 and 2, there exists a unique BGP.

1. Along the BGP, all variables grow at rate

g = µ̄+ � (µ̄)
p
2q (↵) (1� ✓), (17)
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where the upper bound of innovation µ̄ is characterized by

c0 (µ̄) =
1 + � (µ̄) �0

(µ̄)

⇢+ g � q (↵) (� � ✓)� µ̄� 1

2

� (µ̄)2
(1� c (µ̄)) ; (18)

2. The endogenous stationary distribution, 8z > z, has a Pareto tail with the shape parameter

⇣ =

p
2q (↵) (1� ✓)

� (µ̄)
. (19)

Growth decomposition. The first part of Proposition 3 provides a formula for the growth

rate. Equation (17) decomposes the growth rate into two sources: the speed of innovation

by firms on the knowledge frontier, µ̄, and the extent of knowledge di↵usion from innovating

to imitating firms, � (µ̄)
p

2q (↵) (1� ✓). Similar formulas are obtained in continuous-time

models in previous paper by Luttmer (2007, 2012) and Benhabib et al. (2017). A new feature

here is that each component in the formula is an endogenous outcome driven by the incentives

for innovation and imitation, including the fraction of firms innovating ↵, correspondingly the

matching rate q (↵), and the innovation intensity µ̄. The relative strength of the bargaining

power between innovators and imitators a↵ects their incentives and therefore trades o↵ the

two sources of growth.

As the bargaining position of innovators strengthens, directly, the innovating firms ap-

propriate more rents from knowledge di↵usion, which induces a higher innovation e↵ort.

This is demonstrated by the optimality condition (18) that characterizes the upper bound

of innovation µ̄. At the same time, an indirect force due to congestion o↵sets that innova-

tion incentive. As a larger proportion of firms decide to innovate rather than imitate, the

di↵usion rate q (↵) goes down. The indirect force could dominate the positive direct e↵ect.

At the extreme, when the innovators have all the bargaining power, i.e., � = 1, no firm

would ever want to be on the imitation side, and knowledge di↵usion completely disappears,

q (↵) = 0. Combining the two e↵ects, the indirect payo↵ to innovation from knowledge

transfer (� � ✓) q (↵) exhibits a hump shape in the innovator’s bargaining weight �.

The overall e↵ect of the bargaining weights on the growth rate is most likely non-

monotonic. In the lower range of the innovator’s bargaining weight, increased growth through

innovation could o↵set decreased di↵usion. In the upper range, the growth rate is clearly

decreasing in the innovator’s bargaining weight.

Productivity heterogeneity. The second part of Proposition 3 characterizes the de-

trended stationary productivity distribution. The distribution of innovators does not have

an analytical solution, due to the varying level of innovation intensity depending on the firm’s
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distance to the innovation threshold. However, on the knowledge frontier, as the innovation

intensity converges to its constant upper bound, we can characterize the distribution in the

right tail. The productivity of innovating firms follows an asymptotic Pareto distribution

with a shape parameter in equation (19). The shape of the right tail is a useful measure of

productivity heterogeneity. The randomness in innovation outcome and the di↵usion rate

together determine shape of productivity distribution in the right tail. A higher standard

deviation � (µ̄) leads to a fatter right tail, while a higher di↵usion rate q (↵) leads to a thiner

right tail.

Innovation and di↵usion are two opposing forces in shaping the extent of equilibrium het-

erogeneity. On the one hand, innovation contributes to firm heterogeneity, stretching out the

productivity distribution. The dispersion is mainly due to the stochastic nature of innovation

outcome, as captured by the standard deviation of the Brownian motion. It is particularly

true in our scalable-volatility specification of the innovation process, � (µ̄) = �
p
µ̄, where a

higher innovation intensity through more experimentation leads to more dispersed outcome.

Knowledge di↵usion, on the other hand, compresses the productivity distribution as the less

productive firms catch up with the highly-productive firms.

Lemma 2 (Firm Growth). For the innovating firms, the expected growth rate and the vari-

ance of the growth rate converge to

lim

z!1
E [zt+⌧ � zt] = µ̄⌧

lim

z!1
var (zt+⌧ � zt � g⌧) = � (µ̄)2 ⌧.

The intuition for this lemma is straightforward. The productivity of innovating firms

follows a stochastic di↵usion process. For the firms on the knowledge frontier, i.e., z ! 1,

the expected growth rate is equal to the upward drift, the volatility of the growth rate is

equal to the standard deviation.

3.5 Social Value of Innovation

We derive the social value of innovation, taking into account the incremental value created

through future knowledge transfers. Let W i
(z, t) denote the social value associated with an

innovator of productivity z at time t. On the balanced path, W i
(z + gt, t) = exp (gt)W i

(z).

On the knowledge frontier, limz!1 W i
(z) / exp (z) = W i

.

Proposition 4 (Social Value). The marginal social value of innovation converges to

lim

z!1
W i

=

1 + � (µ̄) �0
(µ̄)

⇢+ g � q (↵) (1� ✓)� µ̄� 1

2

� (µ̄)2
(1� c (µ̄)) . (20)
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Table 1: Calibrated parameters

Parameter
Value

Moment
Fixed Vol. Scalable Vol.

Discount rate ⇢ 0.02 0.02 interest rate & growth rate
Standard deviation � 0.08 0.94 vol. of large firm growth
Creative destruction prob. ✓ 2/3 2/3 Garcia-Macia et al. (2019)
Bargaining weight � 0.3 0.3 R&D returns by Bloom et al. (2013)
Matching function e�ciency � 0.034 0.038 di↵usion rate
Matching function curvature ! 0.5 0.5 preset
Innovation cost elasticity " 1 1 preset
Innovation cost scale � 2950 4100 innovation rate

The social value accounts for the value created by e↵ective amount of knowledge trans-

fer, not just the part appropriated by innovators. The marginal private value of innova-

tion in equation (18), the future stream of transfer payo↵ appropriated by the innovator,

q (↵) (� � ✓), enters the value function. In equation (18), the entire payo↵ from future

stream of knowledge transfer, q (↵) (1� ✓), enters the social value function.

4 Quantitative Evaluation

In this section, we first calibrate the dynamic model and then quantitatively assess the impact

of knowledge appropriability on economic growth.

4.1 Calibration

We calibrate the model to match a set of aggregate and micro-level moments. The micro-

level moments include patterns of cross-sectional firm heterogeneity and firm dynamics.

9

Assuming that the economy is on a BGP, we take advantage of the sharp characterization

of the properties of the economy along the BGP in Proposition 3 and Lemma 2 to map

the parameters to their corresponding moments. The calibration is carried out at annual

frequency. One unit of time corresponds to one year in the data. Table 1 displays the

calibrated parameter values.

10

Table 2 reports the moments in the model and in the data.

The discount rate ⇢ matches an annual interest rate of 4% and an annual growth rate of 2%.

9A more full-blown calibration exercise would require extending the model to include multi-factor produc-
tion function and richer features such as entry and exit. The key forces of knowledge creation and di↵usion
would dominate in a richer model.

10Taken together, the parameter values ensure that Assumption 1 is satisfied and the firm’s problem is
well defined.

17



Table 2: Calibrated moments

Moments Data
Model

Fixed Vol. Scalable Vol.

Annual interest rate 4% 4% 4%
Annual growth rate 2% 2% 2%
Pareto right tail index 1.06 (2) 2 2
St. dev of growth rates, large firms 0.08 0.08 0.08
Creative destruction probability 2/3 2/3 2/3
Social return/private return 2.6 2.6 2.6

According to the interest rate equation r = ⇢+ g, the discount rate ⇢ is 0.02.

Standard deviation. Lemma 2 states that the standard deviation of the Brownian motion

corresponds to the volatility of growth rates of the largest firms in the economy. Using the

Longitudinal Business Database, Davis, Haltiwanger, Jarmin and Miranda (2007) find that

the volatility of growth rate for large public-listed firms in the range of 0.05 to 0.01.

11

Therefore, we set the standard deviation � (µ̄) to 0.08. Under the fixed-volatility innovation

process � (µ̄) = �, the parameter � is simply 0.08. Alternatively, under the scalable-volatility

innovation process � (µ̄) = �
p
µ̄, we back out the parameter � after obtaining the extent of

innovation intensity.

Growth decomposition. The results in Proposition 3 allow us to quantity the amount of

growth through innovation and knowledge di↵usion. Recall that the productivity distribution

in the right tail is tightly linked to the equilibrium contact rate for innovators and the

standard deviation of the Brownian motion, ⇣ =

p
2q(↵)

�(µ̄) . The right tail has a Pareto index of

around 1.1 in the U.S. data. We instead target a Pareto right tail index 2. The model-implied

contribution of knowledge di↵usion to growth is

� (µ̄)
p

2q (↵) (1� ✓) = � (µ̄)2 ⇣ = 1.28%.

The residual contribution of innovation to growth is

µ̄ = g � � (µ̄)
p
2q (↵) (1� ✓) = 0.72%.

11This measure of the volatility of firm growth rate in Davis et al. (2007) excludes short-lived firms and
entry and exit. The dispersion in growth rates in the cross section is much higher as it accounts for short-lived
firms, as well as entry and exit. The former is the relevant measure for our purpose.
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Creative destruction. To calibrate the creative destruction probability ✓, we borrow

from the recent paper by Garcia-Macia et al. (2019), who estimate the extent of creative

destruction of innovation based on the patterns of job creation and job destruction at the

firm level. They find that overall, in 1983-1993, 25.5% of aggregate growth is from creative

destruction and 13.7% is from new varieties. Decomposing into entrants and incumbents,

they find that entrants contribute to 18.6% of growth from creative destruction and 13.7%

of growth from new varieties. In the subsequent two decades, they find that the growth from

creative destruction increased while the growth from new varieties decreased. From the lens

of our model, Considering these patterns, we set the creative destruction probability ✓ to

2/3, which is in the ballpark of their estimates.

12

Bargaining weight. The innovator’s bargaining weight � shapes the private return of

innovation relative to the social return. When the innovators appropriate all gains from

knowledge di↵usion, the gap between the private return and the social return closes to zero.

Bloom et al. (2013) estimate that the social rate of return to R&D is around 55%, while the

private return is 21%. In our model, the ratio of social return to private return is

⇢+ g � q (↵) (� � ✓)� µ̄� 1

2

� (µ̄)2

⇢+ g � q (↵) (1� ✓)� µ̄� 1

2

� (µ̄)2
= 2.6.

Given that ⇢ + g = 4%, q (↵) (1� ✓) = 1.28%, µ = 0.72%, � (µ̄) = 0.08, we obtain that

q (↵) (� � ✓) = �0.4. Further, given that the calibrated ✓ is 2/3, the bargaining weight � is

0.3. To gauge whether the calibrated bargaining weight is sensible, we look into the royalty

rates in technology licensing deals. Practitioners in licensing transactions commonly apply

a “25% rule”, which states that the licensees should pay a 25% royalty rate out of the profits

from the licensing deals to the licensors. Our calibrated bargaining weight is close to this

rule. The model-implied indirect net payo↵ from knowledge transfer is around -40% in both

cases of innovation process.

Matching function. We specify a Cobb-Douglas matching function,

M (↵, 1� ↵) = �↵!
(1� ↵)1�! .

The contact rate for innovators is q (↵) = �
�

↵
1�↵

�!�1

and the contact rate for imitators is

p (↵) = �
�

↵
1�↵

�!
. The scale parameter � captures the ease of knowledge di↵usion. The

12Although we consider a pure endowment economy, our model can be mapped to one in Garcia-Macia et
al. (2019). This mapping can be achieved by extending our model to a linear production technology with
labor as inputs under monopolistic competition.
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Figure 2: Innovation intensity
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curvature parameter ! 2 [0, 1] controls the extent of congestion on the innovator side vis-

à-vis the imitator side. If ! = 0, there is no congestion on the imitator side and maximum

congestion on the innovator side. Conversely, if ! = 1, there is no congestion on the innovator

side but maximum congestion on the imitator side.

Although this type of matching technology is widely examined in studies of labor mar-

kets, it is less explored in technology markets. One notable exception is Akcigit, Celik and

Greenwood (2016) who look into the patent resale market and use random search to model

that market. They also specify a Cobb-Douglas matching function and, using the empirical

distribution of the duration until a patent gets sold, find equal amount of congestion on the

two sides of the market. Hence, we set ! to 0.5 such that the extent of congestion is equal on

the two sides. Further, we carry out sensitivity analysis by varying the congestion parameter

later on. The parameter � is calibrated to match the contribution of di↵usion to growth.

To target a di↵usion rate of q (↵) (1� ✓) = (� (µ̄) ⇣)2 /2 = 1.28%, in the the case with fixed

volatility, we obtain a � of 0.034. The model-implied fraction of firms on the innovating side

is roughly 43%. In the case with scalable volatility, we obtain a � of 0.038. The implied

fraction of innovating firms is 49%.

Innovation cost function. The innovation function is specified as c (µ) = �
"+1

µ"+1

. We

fix the elasticity parameter " at 1, following the macro and micro estimates of innovation

elasticity around unity. We calibrate the innovation cost scale parameter � to match the

contribution of innovation to growth. With a fixed volatility, we obtain a � of 2950. With

a scalable volatility, we obtain a � of 4100. Figure 2 displays the optimal investment for

innovators depending on their distance to the threshold at the calibrated parameters.

20



Figure 3: Bargaining weight and growth rate
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4.2 Counterfactuals: Appropriability and Growth

We now evaluate how the extent of appropriation in knowledge di↵usion a↵ects the incentives

for innovation and imitation and hence the overall economic growth. We use the calibrated

model to carry out the counterfactual exercise of varying the bargaining weights. Figure 3

plots, as the innovator’s bargaining weight � increases from 0 to 1, the corresponding growth

rate and its decomposition into innovation and di↵usion, for both fixed and scalable volatility

innovation processes. Figure 4 shows the fraction of innovators, heterogeneity measure,

indirect payo↵ to innovation, and the ratio of social value to private value of innovation as

implied by the model.

With fixed volatility innovation process, the growth rate is maximized when the inno-

vator’s bargaining weight is 0.86. This corresponds to an e↵ective appropriation by the

innovators, (�⇤ � ✓) / (1� ✓), at 0.58. This is due to, as we increase the innovator’s bargain-

ing weight, the di↵usion rate responds with a very mild decline while the innovation rate

gains by a larger magnitude. On one hand, panel (a) of 4 shows that when we increase the

innovator’s bargaining weight from 0 to 0.8, the fraction of firms who choose to innovate is

very flat. We note that the modeling assumption we have made that imitators are idle in

production matters for this result. This assumption makes all imitators identical in value,

eradicating the potential distinction between the average imitator and the marginal imitator.

In this case, f the marginal innovator’s value is not directly a↵ected by its bargaining weight

�. The adjustment of the equilibrium fraction of innovators only comes from the imitator’s

bargaining weight 1� �. Hence, the elasticity of di↵usion to innovator bargaining weight is

mild. On the other hand, the elasticity of innovation to innovator bargaining weight is large

because the indirect payo↵ changes quite substantially as we vary the innovator’s appropri-
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Figure 4: Model-implied moments
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(b) Pareto tail index
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(c) Indirect payo↵
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(d) Social value/private value
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ability. Panel (c) shows, as we increase the innovator’s organizing weight, the indirect payo↵

could increase substantially.

With the scalable volatility innovation process, the overall growth rate tends to be max-

imized by an even higher level of innovator bargaining weight, �⇤
= 0.9. The e↵ective

appropriation by innovators, (�⇤ � ✓) / (1� ✓), is 0.7. The response of the innovation rate

is similar to the case with fixed volatility. This is because the indirect payo↵ to innovation

is largely driven by the change in appropriability in both cases, as shown in panel (c) of

Figure 4. However, the response of knowledge di↵usion behaves very di↵erently. As the

innovation rate µ̄ increases at a higher innovator appropriation, or in other words as the ex-

tent of experimentation increases, the equilibrium level of heterogeneity �
p
µ also increases.

As shown in panel (b), the Pareto tail index experiences a sharper decrease in the case of

scalable volatility compared to the case with fixed volatility. This has a secondary e↵ect on

the di↵usion rate �
p
µ
p

2q (↵). In fact, the magnitude of higher heterogeneity dominates

the change in the contact rate, resulting in higher di↵usion rate in a large interval of values

of bargaining weight.
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Figure 5: The e↵ect of congestion and volatility on the optimal bargaining weight
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Figure 6: The e↵ect of creative destruction on the optimal bargaining weight
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4.3 Discussions

Three parameters are potentially important in determining the growth maximizing degree

of innovator appropriation: the extent of learning congestion !, the innovation outcome

dispersion �, and the creative destruction probability ✓. We consider the impact of changing

each of the three parameters while keeping other parameters fixed at their calibrated level.

Given that the two innovation processes have mild di↵erences, we carry out this sensitivity

analysis for the fixed volatility process only.

First, if we were to target a higher level of volatility of innovation process at 0.1 and

correspondingly a higher equilibrium level of heterogeneity, it would reenforce that the op-

timal innovator bargaining weight should be zero. On the contrary, when we reduce the

targeted level of volatility of innovation process, for example at a low level 0.01, the optimal

innovator bargaining weight would be 0.61. Second, when the weight of innovators in the

matching function ! is assumed to be 0, then the optimal innovator bargaining weight is
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zero. However, if the weight of innovators in the matching function ! is 1, then the optimal

innovator bargaining weight is one. This latter case represents the situation where innova-

tors’ contact rate is independent of the composition, so entry of marginal firms into this side

of the market has no negative external e↵ect. Moreover, as ! ! 1, total matching becomes

proportional to the mass of innovators so it is optimal to make it as large as possible. This is

accomplished by having larger �. As there are no external e↵ects and higher � internalizes all

returns from innovation, the optimal value converges to one. One key insight stands out from

this exercise: only when there is a substantial reduction in the volatility of the innovation

process, a di↵erent conclusion on the growth maximizing innovator bargaining weight might

be obtained.

5 Conclusion

To be added.
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Appendix

A Proofs

A.1 Proof of Lemma 1

First, we divide both sides of the HJB equation (10) for the innovator’s value function by

exp (z),

r (t)
V i

(z, t)

exp (z)
= max

µ

⇢
1 + q (↵ (t)) (� � ✓)

✓
V i

(z, t)

exp (z)
� V c

(t)

exp (z)

◆

�c (µ) + µ
V i
z (z, t)

exp (z)
+

1

2

� (µ)2
V i
zz (z, t)

exp (z)
+

V i
t (z, t)

exp (z)

�
. (21)

In equation (21), the flow payo↵ from knowledge transfer relative to their own productivity,

V c
(t)

exp(z) , is decreasing in z. In particular, for firms on the knowledge frontier, this component

converges to zero, limz!1
V c

(t)
exp(z) = 0.

We guess and verify that the innovator’s value function is asymptotically a�ne in exp (z),

lim

z!1

V i
(z, t)

exp (z)
= vi (t) . (22)

Di↵erentiating equation (22) with respect to z and t, we obtain that

lim

z!1

V i
z (z, t)

exp (z)
= lim

z!1

V i
zz (z, t)

exp (z)
= vi (t) and lim

z!1

V i
t (z, t)

exp (z)
= vit (t) . (23)

Plugging the expressions in (22) and (23) into equation (21):

r (t) vi (t) = max

µ

⇢
1 + q (↵ (t)) (� � ✓) vi (t)� c (µ) + µvi (t) +

1

2

� (µ)2 vi (t) + vit (t)

�
,

which is an ordinary di↵erentiation equation that characterizes vi (t). The first-order condi-

tion with respect to the innovation at the limit is

c0 (µ̄ (t)) = (1 + � (µ̄ (t)) �0
(µ̄ (t))) vi (t) .

Hence we have verified that V i
(z, t) is asymptotically a�ne in exp (z).

We take the limit of the first-order condition (11) for innovation:

lim

z!1
c0 (µ (z, t)) = lim

z!1
(1 + � (µ (z, t)) �0

(µ (z, t))) vi (t) .
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It must be that limz!1 µ (z, t) = µ̄ (t).

A.2 Proof of Proposition 3

On the BGP, given the growth rate g, the interest rate r (t) = r = ⇢+g. The value functions

satisfy V i
(z + gt, t) = exp (gt)V i

(z) and V c
(t) = exp (gt)V c

. The innovation threshold

also grows at rate g, z (t) = z + gt. Applying these properties, the HJB equations (10) and

(12) become

⇢V i
(z) =max

µ

�
exp (z) + q (↵) (� � ✓)

�
V i

(z)� V c
�

(24)

�c (µ) exp (z) + (µ� g)V i
z (z) +

1

2

� (µ)2 V i
zz (z)

�
,

⇢V c
=p (↵) (1� �)

�
E
⇥
V i

(z̃) |z̃ > z
⇤
� V c

�
. (25)

At the innovation threshold z, the value matching and smooth pasting conditions (7) and

(8) become

V c
= V i

(z) ,

0 = V i
z (z) .

Detrending the productivity distribution according to equation (16), we transform the

KF equation (13) into an ordinary di↵erential equation, 8z � z,

q (↵) (1� ✓) f (z) + gf 0
(z)� @ (µ (z) f (z))

@z
+

1

2

@2

�
� (z)2 f (z)

�

@z2
= 0. (26)

Now at the threshold,

q (↵)↵ (1� ✓) = gf (z)

The stationary distribution to the right of the threshold does not allow for an analytical

solution, due to the varying level of innovation intensity. However, using the result in Lemma

1 that the innovation intensity converges to a constant upper bound in the limit, we can

solve the asymptotic distribution in the right tail analytically. When z converges to infinity,

equation (26) converges to

lim

z!1

⇢
q (↵) (1� ✓) f (z) + (g � µ̄) f 0

(z) +
1

2

� (µ)2 f 00
(z)

�
= 0.

The asymptotic stationary distribution in the right tail follows a mixture of Gamma distri-
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butions, 8z > z,

f (z) = (B
1

+B
2

(z � z))

✓
exp (z)

exp (z)

◆⇣

,

where

⇣ =

1

� (µ̄)2

✓
g � µ̄±

q
(g � µ̄)2 � 2� (µ̄)2 q (↵) (1� ✓)

◆
. (27)

Hence the productivity Z = exp (z) has a Pareto index ⇣ in the right tail.

As in Luttmer (2007) and Benhabib et al. (2017), there can potentially exist a continuum

of equilibria associated with di↵erent growth rates and stationary distributions. When the

initial distribution has a bounded support under Assumption 2, we obtain a unique BGP

with growth rate.

g = µ̄+ � (µ̄)
p

2q (↵) (1� ✓).

This is the lower bound of growth rate g derived from equation (27). The Pareto tail index

in equation (27) becomes

⇣ =

p
2q (↵) (1� ✓)

� (µ̄)
. (28)

To solve for the endogenous innovation decision, we apply again the result in Lemma 1.

The value function on the knowledge frontier is asymptotically a�ne in exp (z):

lim

z!1

V i
(z)

exp (z)
= vi, where vi =

1� c (µ̄)

⇢+ g � q (↵) (� � ✓)� µ̄� 1

2

� (µ̄)2
. (29)

Combing equation (29) with the first-order condition (11) for innovation, we obtain equation

(18) for characterizing the innovation upper bound µ̄. Finally, according to the expression

in equation (29), Assumption 1 is necessary to ensure that firm’s problem is well defined.

A.3 Proof of Lemma 2

Along the BGP, the productivity of innovating firms, relative to the trend, follows the di↵u-

sion process:

dz � gdt = (µ (z)� g) dt+ � (µ (z)) dB.

The expected growth rate over a relative short time interval of ⌧ is:

E [zt+⌧ � zt � g⌧ ] = (µ (zt)� g) ⌧.

30



For firms on the technology frontier, i.e., z ! 1, their expected growth rate converges to

lim

z!1
E [zt+⌧ � zt � g⌧ ] = (µ̄� g) ⌧.

The variance of growth rate is

lim

z!1
var (zt+⌧ � zt � g⌧) = � (µ̄)2 ⌧.

A.4 Proof of Proposition 4

Let W i
(z, t) denote the social value function associated with an innovating firm with pro-

ductivity z at time t. Let W c
(t) denote the social value function associated with a copying

firm at time t. The social value functions satisfy the following HJB equations:

r (t)W i
(z, t) = exp (z) + q (↵ (t)) (1� ✓)

�
W i

(z, t)�W c
(t)
�

(30)

� c (µ) exp (z) + µW i
z (z, t) +

1

2

� (µ)2 W i
zz (z, t) +W i

t (z, t) ,

r (t)W c
(t) =p (↵ (t)) (1� ✓)

�
E
⇥
W i

(z, t)
�� z > z (t)

⇤
�W c

(t)
�
+W c

t (t) . (31)

On the BGP, equation (30) simplifies to

⇢W i
(z) = exp (z)+q (↵) (1� ✓)

�
W i

(z)�W c
�
�c (µ) exp (z)+(µ� g)W i

z (z)+
1

2

� (µ)2 W i
zz (z) .

Taking the limit z ! 1:

lim

z!1

W i
(z)

exp (z)
= wi, where wi

=

1� c (µ̄)

⇢+ g � q (↵) (1� ✓)� µ+

1

2

� (µ̄)2
.

The marginal social value of innovation is then wi
(1 + � (µ̄) �0

(µ̄)).
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