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SUPPLEMENT TO “OPTIMAL REGULATION OF NONCOMPETE CONTRACTS"

LIYAN SHI
Tepper School of Business, Carnegie Mellon University and CEPR

This supplement contains three sections. Appendix B provides supplementary derivations
and proofs of the results presented in Sections 2 and 3. Appendix C includes details of the
extensions and robustness checks summarized in Section 5.3. In Appendix D, I use a simplified
one-period version of the dynamic model to illustrate some additional insights. An additional
online appendix not intended for publication can be found on the author’s website.

APPENDIX B: SUPPLEMENTARY DERIVATIONS AND PROOFS

B.1. Derivation of Entrant Match Value Subject to Noncompete Exclusion

The calculation below shows that the enforcement of the noncompete clause leading to a
production delay of duration π reduces the entrant match value to e−rπ fraction.

Consider an entrant match with productivity zt at time t. If it is excluded from production
for duration π, production cannot occur during the noncompete period, ∀s ∈ [t,t+π). The flow
payoff from production starts from time t+π. The joint value is

E
[∫ T

t+π

e−rszsds+e
−r(T−t)[Jn(zT ,κ)+τT (π̃T (θT ))]

]
. (B.1)

The productivity does not evolve during the noncompete period: zs = zt, for t ≤ s ≤ t+π.
After performing a change of variable, ŝ≡ s−π and T̂ ≡ T−π, equation (B.1) becomes

E

[∫ T̂

t

e−r(ŝ+π)zŝdŝ+e
−r(T̂−t+π)[Jn(zT̂ ,κ)+τT̂ (π̃T̂ (θT̂ ))]

]
= e−rπJn(zt,κ).

B.2. Contracting Cost Specification

This section shows that the model allows for a different interpretation of the contracting
cost. Instead of legal costs, I now treat the contracting costs as disutilities workers suffer due to
perceived restricted opportunity.

The promise-keeping constraint (1) is modified to

E
[∫ T

0

e−rt(wt−κzt)dt+e−rTJ(zT ,κ)

]
≥ U0. (B.2)

The firm value in (3) is modified to

V n(z0,U0,κ) = max
{wt,µt,Mt}t≥0

E
[∫ T

0

e−rt(zt−c(µt)zt−wt)dt+e−rT τT (π̃T (θT ))

]
. (B.3)

subject to the PK constraint (B.2) and the entrant’s IC constraint (4) and IR constraint (5).
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Compared to (1) and (3), the firm does not directly bear the contracting costs, but it adjusts
for the costs imposed on the worker when making wage payments to deliver the promised
utility. Incorporating the PK constraint (B.2) into the firm’s objective in (B.3), I obtain the same
bilateral efficiency result in Lemma 1. Therefore, it is irrelevant for efficiency implications
whether the firm or the worker bears the contracting costs. The only difference is that, in the
latter case, the wage adjusts upwards to compensate the worker for the cost.

B.3. Sequential to Recursive Formulation

This section complements the proof for Lemma 1 in Section A.1 and formally derives the
recursive formulation for the joint maximization problem from the sequential one.

I first note that it is without loss of generality to assume that the decision to include a non-
compete clause is perfectly persistent over time, i.e., if a firm finds it profitable to include a
noncompete clause at the beginning of the match, it will find it profitable to do so in the fu-
ture. I define the time t discounting factor for time s ≥ t payoff, adjusting for the job-to-job
transition rates in between {ηix}t≤x≤s:

Ri(t,s) = exp

(
−
∫ s

t

(
r+ηix

)
dx

)
, i ∈ {c,n}.

Absent noncompete clauses. Consider the case absent noncompete clauses. Using the ad-
justed discount factors, I rewrite the firm’s objective (2) and the PK constraint (1) as:

V c(zt,Ut) = max
{ws,µs}s≥t

E
[∫ ∞

t

Rc(t,s)(zs−c(µs)zs−ws)ds
]

subject to

E
[∫ ∞

t

Rc(t,s)(ws+η
c
sJ

c(zs))ds

]
≥ Ut.

By the Martingale Representation Theorem, there exists a process {σUt }t≥0 such that
{Ut}t≥0 satisfies the following stochastic differential equations:

dUt =
[(
r+ηit

)
Ut−wt−ηitJc(zt)

]
dt+σUt dBt.

Thus, the firm’s value function follows the HJB equation (dropping the time subscript):

(r+ηc)V c(z,U) = max
w,µ,σU

{
z−c(µ)z−w+µzV c

z (z,U)+
1

2
σ2z2V c

zz(z,U) (B.4)

+V c
U(z,U)[(r+ηc)U−w−ηcJc(z)]+1

2

(
σU
)2
V c
UU(z,U)+σzσUV c

zU(z,U)

}
.

Taking the derivative with respect to w, I obtain

V c
U(z,U)≥−1 with “ = ” if w > 0.

If λ is not too large, the wage non-negativity constraint will never bind. In this case, V c
U(z,U) =

−1. Further, I obtain that V c
UU(z,U) = 0, V c

zU(z,U) = 0, and Jc(z) = V c(z,U)+U . Substitut-
ing these equations into the HJB equation (B.4), it becomes equation (7).
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With noncompete clauses. For the case with noncompete clauses, I follow the same steps
as before. I rewrite the firm’s objective in (3) and the PK constraint (1) as:

V n(zt,Ut,κ) = max
{ws,µs,Ms}s≥t

E

[∫ ∞
t

Rn(t,s)

(
zs−c(µs)zs−κzs−ws

+λp

∫ ∞
θ̄ns

τs(π̃s(θs))dF (θs)

)
ds

]

subject to

E
[∫ ∞

t

Rn(t,s)(ws+η
n
s J

n(zs,κ))ds

]
≥ Ut,

and the entrant firms’ IC and IR constraints (4) and (5).
By the same reasoning, there also exists a process {σUt }t≥0 such that {Ut}t≥0 satisfies

dUt =
[(
r+ηit

)
Ut−wt−ηitJn(zt,κ)

]
dt+σUt dBt.

Thus, the firm’s value function follows the HJB equation (dropping the time subscript):

(r+ηn)V n(z,U,κ) = max
w,µ,M,σU

{
z−c(µ)z−κz−w+λp

∫ ∞
θ̄n
τ(π̃(θ))dF (θ)+µzV n

z (z,U)

+
1

2
σ2z2V n

zz(z,U)+V n
U (z,U)[(r+ηn)U−w−ηnJn(z,κ)]

+
1

2

(
σU
)2
V n
UU(z,U)+σzσUV n

zU(z,U)

}
. (B.5)

If the wage non-negativity constraint does not bind, we also have V n
U (z,U) = −1. Further,

V n
UU(z,U,κ) = 0, V n

zU(z,U,κ) = 0, and Jn(z,κ) = V n(z,U,κ)+U . Substituting these equations
into the HJB equation (B.5), it becomes equation (8).

B.4. Proof of Corollary 1

If the hazard rate is constant:

θ̄n∗(κ) = 1+
ε∆

ε∆+1

1−F
(
θ̄n∗(κ)

)
f
(
θ̄n∗(κ)

) = 1+
ε∆

ε∆+1

1−F
(
θ̄n
)

f
(
θ̄n
) = 1+

ε∆

ε∆+1

(
θ̄n−1

)
. (B.6)

Mapping to the duration cap and using erπ−1≈ rπ and log
(

1+ ε∆
ε∆+1

rπ
)
≈ ε∆

ε∆+1
rπ:

π(κ) =
1

r
log
(
θ̄n∗(κ)

)
=

1

r
log

(
1+

ε∆

ε∆+1
(erπ−1)

)
≈ ε∆

ε∆+1
π.

The approximation in the last step is a good one when rπ is reasonably small.
If the monotone hazard rate is increasing, the second “=” in equation (B.6) becomes a “≥”.

Thus, the approximation provides a lower bound for the precise solution. Similarly, if the mono-
tone hazard rate is decreasing, the approximation is an upper bound.
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B.5. Additional Derivations of the Wage-Tenure Profile

This section complements Section 2.5 in characterizing how noncompete clauses affect the
wage dynamics over tenure. In addition to the wage-setting process captured by the worker’s
value functions, I specify the joint evolution of match productivity and wage outcomes, (z,w),
over tenure. To simplify the problem, I take advantage of the linearity of the joint match value in
z (Lemma 2) and focus on the fraction of match output paid to the worker. This transformation
reduces the state (z,w) to the wage-productivity ratio: x≡ log

(
w
z

)
.

The expected wage growth up to tenure t can be decomposed into: (i) growth in fraction paid
out as wage; and (ii) the growth in match productivity:

E[log(wt)]−log(w0) = E[xt]−x0+E[log(zt)]−log(z0) = E[xt]−x0+

∫ t

0

(
µs−

1

2
σ2

)
ds.

This decomposition implies that it suffices to characterize the xt, which follows

dxt =−
(
µt+

1

2
σ2

)
dt+σdBt+jumps,

where the jumps occur due to wage bidding to counter outside offers.

Worker’s value functions. To transform the worker’s value functions, I define uc(x) ≡
Uc(z,w)

z
and un(x,κ)≡ Un(z,w,κ)

z
. Taking the derivatives with respect to z:

U iz = ui−uix and U izz =
1

z

(
uixx−uix

)
,∀i ∈ {c,n}.

Further, the wage bidding thresholds θc(z,w) = θc(x), θn(z,w,κ) = θn(x,κ), and θu(z,w,κ) =
θu(x,κ). The threshold conditions (9) and (10) simplify to

uc(x) = jcθc(x) and un(x,κ) = jn(κ)θu(x,κ) = e−rπjn(κ)θn(x,κ).

The upper bounds of wage w̄c(z) and w̄n(z,κ) also reduce to upper bounds of the wage-
productivity ratio x̄c and x̄n(κ). The boundary conditions (11) and (12) become

uc(x̄c) = jc and ucx(x̄c) = 0; un(x̄n,κ) = jn(κ) and unx(x̄n(κ),κ) = 0.

Substituting the three relations above into the HJB equation (13), I obtain the simplified version:
∀x ∈ [0,x̄c],

(r+λ−µc)uc(x) = ex−
(
µc+

1

2
σ2

)
ucx(x)+

1

2
σ2ucxx(x) (B.7)

+λ

{
F (θc(x))uc(x)+

∫ 1

θc(x)

θdF (θ)jc+(1−F (1))jc
}
.

Similarly, the HJB equation (14) simplifies to, ∀x ∈ [0,x̄n(κ)],

(r+λ−µn(κ))un(x,κ) = ex−
(
µn(κ)+

1

2
σ2

)
unx(x,κ)+

1

2
σ2unxx(x,κ) (B.8)

+λp

{
F (θn(x,κ))un(x,κ)+

∫ θ̄n

θn(x,κ)

θdF (θ)e−rπjn(κ)+
(
1−F

(
θ̄n
))
jn(κ)

}
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+λ(1−p)
{
F (θu(x,κ))un(x,κ)+

∫ 1

θu(x,κ)

θdF (θ)jn(κ)+(1−F (1))jn(κ)

}
.

Conveniently, the problem of solving the partial differential equations (13) and (14) transforms
to one of solving the ordinary differential equations (B.7) and (B.8).

To set the initial wage w0, it suffices to set x0 ≡ log
(
w0

z0

)
. Equation (15) becomes

uc(xc0) = βjc and un(xn0 ,κ) = βjn(κ).

KF equations. Absent a noncompete clause, the density of matches of productivity z with
wage w at tenure t, conditional on survival, follows the KF equation: ∀w ∈ [0,w̄c(z)],

ψct (z,w,t) =−µczψcz(z,w,t)+
1

2
σ2z2ψczz(z,w,t) (B.9)

+λ

{
f(θc(z,w))

F (1)

∫ w

0

ψc(z,w̃,t)dw̃−
(

1−F (θc(z,w))

F (1)

)
ψc(z,w,t)

}
.

With a noncompete clause, the corresponding KF equation is, for ∀w ∈ [0,w̄n(z)],

ψnt (z,w,κ,t) =−µn(κ)zψnz (z,w,κ,t)+
1

2
σ2z2ψnzz(z,w,κ,t) (B.10)

+λp

{
f(θn(z,w,κ))

F
(
θ̄n
) ∫ w

0

ψn(z,w̃,κ,t)dw̃−

(
1−F (θn(z,w,κ))

F
(
θ̄n
) )

ψn(z,w,κ,t)

}

+λ(1−p)
{
f(θu(z,w,κ))

F (1)

∫ w

0

ψn(z,w̃,κ,t)dw̃−
(

1−F (θu(z,w,κ))

F (1)

)
ψn(z,w,κ,t)

}
.

In equation (B.9), the terms on the right-hand side of the first line capture the productivity
innovations. The terms in the second line capture the wage jumps conditional on match survival:
the inflow when the entrants bid up wage for those below w to exactly w and the outflow when
wage is bid to above w. In (B.10), the terms concerning the wage jumps distinguish the two
cases depending on whether the noncompete clause is enforced.

Instead of solving the density functions ψc(z,w,t) and ψn(z,w,κ,t), I solve the equivalent
ones for the wage-productivity ratio: ψc(x,t) and ψn(x,κ,t). Absent a noncompete clause, the
distribution evolves according to: ∀x ∈ [xc,x̄c].

ψct (x,t) =

(
µc+

1

2
σ2

)
ψcx(x,t)+

1

2
σ2ψcxx(x,t)

+λ

{
f(θc(x))

F (1)

∫ x

xc
ψc(x̃,t)dx̃−

(
1−F (θc(x))

F (1)

)
ψc(x,t)

}
,

Otherwise, ∀x ∈ [xn(κ),x̄n(κ)],

ψnt (x,κ,t) =

(
µn(κ)+

1

2
σ2

)
ψnx (x,κ,t)+

1

2
σ2ψnxx(x,κ,t)

+λp

{
f(θn(x,κ))

F
(
θ̄n
) ∫ x

xn(κ)

ψn(x̃,κ,t)dx̃−

(
1−F (θn(x,κ))

F
(
θ̄n
) )

ψn(x,κ,t)

}
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+λ(1−p)
{
f(θu(x,κ))

F (1)

∫ x

xn(κ)

ψn(x̃,κ,t)dx̃−
(

1−F (θu(x,κ))

F (1)

)
ψn(x,κ,t)

}
.

The initial distribution at tenure 0, ψc(x,0), is a mass point at xc0, and ψn(x,κ,0) a mass
point at xn0 (κ).

B.6. Bargaining Games

Bargaining taking places in several instances in the model: (i) the bilateral bargaining be-
tween a newborn firm and a newborn worker when forming a match, (ii) the three-party bar-
gaining when an entrant arrives to poach an employed worker, and (iii) negotiating for a buyout
payment after the entrant poaches the worker. Furthermore, bargaining under asymmetric infor-
mation tends to introduce additional complexities compared to the standard perfect-information
settings. So additional clarifications of the information structure and the bargaining games are
in order.

Bilateral firm-worker bargaining. The two parties involved in a match are perfectly in-
formed about the characteristics of their match.1 Thus, for a newborn match entering the
economy, the negotiation process follows the alternating-offer bargaining game by Rubinstein
(1982), which delivers the Nash-bargaining solution. The bargaining powers are determined
by the relative impatience of the two bargaining parties, with the worker’s bargaining weight
denoted by β.

In addition, to focus on the contracting problem concerning job-to-job mobility, the possi-
bilities of worker unemployment and firm replacement of workers are eliminated. If failing to
reach an agreement, both the firm and the worker exit the economy. Thus, their outside options
are normalized to zero.

Summarizing, at the formation of the match, the worker receives β share of the maximized
joint value J(z0,κ) obtained, as captured by equation (15). This value is delivered by all future
wage payments anticipated in all jobs promised in the long-term contract.

Three-party bargaining. When an outside offer arrives for an employed worker, the two
competing firms are asymmetrically informed about their respective match productivity. While
the worker is perfectly informed about both the incumbent match and the new match, she stands
in as the object for the bidding and does not plan an active role.

When bidding for the worker, given the information asymmetry between the two competing
firms, the bargaining protocol departs from the standard ones in the models by Postel-Vinay
and Robin (2002) and Cahuc et al. (2006). Instead of the two firms making alternating offers to
the worker, the firms bid in an ascending (English) auction.

If the worker is not bound by noncompete restriction, the bidding process generates the
Bertrand competition outcome identical to the one in Postel-Vinay and Robin (2002), with the
winning firm paying a price equal to the reservation value of the losing firm. In this case, the
worker gets zero share of the rent from reallocation, while the entrant firm retains the full share,
implicitly setting the worker’s bargaining power to zero. When a noncompete clause exists and
is enforceable, it reduces the outside match value and impairs the poaching firm’s ability to bid.
Thus, a better outside match is needed to win the bid.

1The information friction within a firm-worker match in labor search models studied by, for example, Guerrieri
(2008) are absent in this regard.
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Firm-firm bargaining. If a buyout stage ensues, an additional bargaining process takes
place between the incumbent and entrant firms to determine the buyout payment. In this stage,
the incumbent firm still has imperfect information about the entrant match value. It has learned
that the entrant match is above the poaching threshold but not its precise value. I assume that
the incumbent makes a take-it-or-leave-it offer to the entrant match, implicitly assigning all the
bargaining power to the incumbent firm.

B.7. Aggregation

This section shows the aggregation of the economy. In steady state, the distribution converges
to a stationary one, limt→∞g(z,κ,t) = g(z,κ). Building on Proposition 1, I use the conditional
distributions in the steady state to compute the aggregate productivity. That is, the density of
matches conditional on not being subject to noncompete, gc(z), and the density of matches
conditional on being subject to noncompete and of cost type κ, gn(z;κ). These conditional
densities follow the stationary version of the KF equations:

0 =−µcgcz(z)+
1

2
σ2gczz(z)+δ[h(z)−gc(z)]+λ

∫ ∞
1

[
gc
(z
θ

)
−gc(z)

]
dF (θ) (B.11)

0 =−µn(κ)zgnz (z;κ)+
1

2
σ2z2gnzz(z;κ)+δ[h(z)−gn(z,κ)] (B.12)

+λ

{
p

∫ ∞
θ̄n

[
gn
(z
θ

;κ
)
−gn(z;κ)

]
dF (θ)+(1−p)

∫ ∞
1

[
gn
(z
θ

;κ
)
−gn(z;κ)

]
dF (θ)

}
.

LEMMA B.1—Aggregation: The steady-state aggregate productivity is Z = Zc(1−Φ(κ̄))+∫ κ̄
0
Zn(κ)dΦ(κ), where, depending on whether not subject to noncompete clauses, the condi-

tional aggregate productivity is

Zc =

δ

∫
zdH(z)

δ−µc−λ
∫ ∞

1

(θ−1)dF (θ)

(B.13)

Zn(κ) =

δ

∫
zdH(z)

δ−µn(κ)−λ
[
p

∫ ∞
θ̄n

(θ−1)dF (θ)+(1−p)
∫ ∞

1

(θ−1)dF (θ)

] . (B.14)

PROOF: First, to calculate Zc =
∫∞

0
zgc(z)dz, multiply the KF equation (B.11) by z and

integrate it from z = 0 to z =∞:

0 =

∫ ∞
0

z

{
−µcgcz(z)+

1

2
σ2gczz(z)+δ[h(z)−gc(z)]+λ

∫ ∞
1

[
gc
(z
θ

)
−gc(z)

]
dF (θ)

}
dz

Integrating by parts, performing a change of variables, and combining the terms:

δ

∫
zh(z)dz =

[
δ−µc−1

2
σ2−λ

∫ ∞
1

(θ−1)dF (θ)

]∫ ∞
0

zgc(z)dz,

from which I obtain the expression for Zc in (B.13).
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Similarly, applying the same steps to KF equation (B.12), I obtain the expression for Zn(κ)
in (B.14). Q.E.D.

The aggregation formulas in (B.13) and (B.14) also illustrates the investment-reallocation
trade-off in the intensive margin. Rent extraction leads to higher productivity improvement
from investment, µn(κ)> µc, at the expense of lower productivity improvement from worker
reallocation,

∫∞
θ̄n

(θ−1)dF (θ) <
∫∞

1
(θ−1)dF (θ). It also shows that, for the functional form

H(·), the average value of newborn match productivity,
∫
zdH(z), is the relevant statistic.

Given Lemma B.1, I obtain the steady-state aggregate net output, or aggregate consumption
by accounting for the investment and contracting costs Y = Y c(1−Φ(κ̄))+

∫ κ̄
0
Y n(κ)dΦ(κ),

where

Y c = Zc(1−c(µc)) and Y n(κ) = Zn(κ)(1−c(µn(κ))−κ).

B.8. Welfare Measure

Lemma 4 implies that

S(z,κ) = s(κ)z+
δ

ρ+δ
S0, where s(κ) = sc1{i(κ)=c}+s

n(κ)1{i(κ)=n}. (B.15)

Integrating equation (B.15) across the distribution of the newborn matches, I obtain the average
social value of the newborn matches satisfies

S0 =

∫∫
S(z,κ)dH(z)dΦ(κ) =

∫
s(κ)dΦ(κ)

∫
zdH(z)+

δ

ρ+δ
S0,

which implies that

S0 =
ρ+δ

ρ

∫
s(κ)dΦ(κ)

∫
zdH(z). (B.16)

Substituting equation (B.16) into equation (B.15), I obtain that the social value function is

S(z,κ) = s(κ)z+
δ

ρ

∫
s(κ)dΦ(κ)

∫
zdH(z).

Steady-state welfare. The steady-state welfare is obtained by aggregating the social values
S(z,κ) across the steady-state distribution G(z,κ):

Wss =

∫∫
S(z,κ)dG(z,κ) =

∫∫
s(κ)zdG(z,κ)+

δ

ρ

∫
s(κ)dΦ(κ)

∫
zdH(z)

= sc
(
Zc+

δ

ρ

∫
zdH(z)

)
(1−F (κ̄))+

∫ κ̄

0

sn(κ)

(
Zn(κ)+

δ

ρ

∫
zdH(z)

)
dF (κ).

Recall the expressions for sc and sn(κ) in (35) and (36). The following relations hold:

sc
(
Zc+

δ

ρ

∫
zdH(z)

)
=
Y c

ρ

sn(κ)

(
Zn(κ)+

δ

ρ

∫
zdH(z)

)
=
Y n(κ)

ρ
.
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FIGURE B.1.—Sensitivity of intensive-margin duration cap to the discount rate. Note: The welfare gains are in
the Florida-level enforceability regime, i.e., p= 1.

Thus, the steady state welfare equals the discounted flow of the steady-state net output:

Wss =
1

ρ

[
Y c(1−F (κ̄))+

∫ κ̄

0

Y n(κ)dΦ(κ)

]
=
Y

ρ
.

Time-zero welfare. The time-zero welfare is obtained by aggregating the social values
S(z,κ) across the given initial distribution G(z,κ,0):

W0 =

∫∫
S(z,κ)dG(z,κ,0) =

∫∫
s(κ)zdG(z,κ,0)+

δ

ρ

∫
s(κ)dΦ(κ)

∫
zdH(z).

Sensitivity to discount rate. I carry out an exercise to check how sensitive the optimal non-
compete policy and the resulting welfare gain are to the discount rate ρ. With a lower discount
rate, investment has a higher social value: the cost is incurred in the present moment, but the
benefit accrues over time. Therefore, the optimal noncompete policy would tilt toward a higher
noncompete duration cap to protect more investment.

In addition, the discount rate ρ also drives the discrepancy between the time-zero welfare
and the steady-state welfare. By disregarding the delay in investment payoffs, the steady-state
welfare tends to prescribe a less stringent noncompete cap than the time-zero one. When the
discount factor ρ→ 0, the time-0 welfare coincides with the steady-state welfare, i.e., W0→
Wss, since the planner values only the streams of steady-state output in the distant future. The
discount rate discrepancy between the two measures disappears.

Quantitatively, Figure B.1 illustrates the discount rate effect. It plots the welfare gains in
the intensive margin from capping noncompete duration from zero to the private-optimal level
at various discount rates. First, with the calibrated model with the discount rate ρ = 5% in
Section 5.2, the time-zero welfare accounting for the transition path suggests an optimal cap
of 1.5 months. In comparison, the steady-state welfare peaks at a duration cap of 10 months.
Second, consider an experiment of imposing a zero discount rate, i.e., ρ→ 0, and recalibrate the
model. Still, even at the lowest possible discount rate favoring more protection of incumbent
investment, the welfare-maximizing duration cap is very stringent at 2 months. Moreover, as the
discount rate effect vanishes, the two welfare criteria converge to the same consistent metric,
peaking at a two-month cap.

APPENDIX C: DETAILS OF THE EXTENSIONS AND ROBUSTNESS CHECKS
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FIGURE C.1.—Entrant match quality distribution.

C.1. Entrant Match Quality Distribution

For the entrant match quality, consider a double Pareto distribution centered around θc ≥ 1,
with a left tail parameter α̂ and a right tail parameter α. For θ ≥ 1, the normalized density is

f(θ)

1−F (1)
=

{
aθαc θ

−(α+1), θ ≥ θc
aθα̂c θ

−(α̂+1), 1≤ θ < θc,

where a= 1/
(

1
α
− 1−θα̂c

α̂

)
. This distribution nests the baseline one when α̂= α.

For illustration, I impose that θc = θ̄n = α
α−1

such that the private-optimal solution to the
poaching threshold equation (19) is identical to the baseline one. I then vary the shape of the left
tail α̂ such that the model generates various magnitudes of mobility decline. A lower α̂ implies
that fewer opportunities are blocked and thus a smaller decline in mobility. I adjust the arrival
rate λ such that the job-to-job transition rate for workers under noncompete clauses is kept
the same as the baseline, which ensures that the remaining model parameters are unchanged
when matching the data. Figure C.1 plots the distributions underlying Figure 7 (b) and (d).2
In extreme cases with thin left tails (very negative α̂), the hazard rate can vary a lot along the
entrant match distribution and can affect the policy substantially.

C.2. Selection Effect

This section contains the supplementary details about the two alternative specifications for
the selection channel in Section 5.3. The first setting assumes away the contracting cost. This
specification shuts down the selection channel in the extensive margin entirely and only allows
the intensive margin to operate. I refer to this as a no-selection economy.

LEMMA C.1—No Selection: Consider an economy with no contracting cost, i.e., κ= 0.
(i) In the laissez-faire equilibrium, all firm-worker matches include a noncompete clause, the

terms of which are characterized in Proposition 1.

2I rule out pathological cases of entrant match quality distribution. One pathological case is when the entrant types
blocked by noncompete clauses are concentrated around θ = 1. Since the social gains from reallocation the planner
can recuperate are negligible, the unregulated equilibrium is efficient. With the appropriate data, a non-parametric
estimation of the distribution F (θ) would be valuable.
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TABLE C.I

RECALIBRATED PARAMETERS FOR THE SELECTION CHANNEL.

Specification Endogenous No Exogenous
Selection Selection Selection

Contracting cost κ log(κ)∼N(−4.3,0.98) κ ∈ {0} κ ∈ {0,∞}, φ̄= 0.7
Investment cost elasticity ε 6.8 3.2 3.2
Investment cost level φ 24.7 50.4 50.4

(ii) In the social optimum, the planner lets all matches to use a noncompete clause but with a
lower duration, which can be implemented by a duration cap as in Corollary 1.

The economy considered in Lemma C.1 would imply 100% noncompete prevalence, which
is in stark contrast with the data. To realign with the overall data, I consider a second setting
with a binary cost distribution below. I refer to this as the exogenous-selection model.

LEMMA C.2—Exogenous Selection: Consider an economy where the contracting cost type
follows a two-point distribution: κ ∈ {0,∞}, with probability φ̄ the cost is zero.

(i) In the laissez-faire equilibrium, a φ̄ proportion of the firm-worker matches include a non-
compete clause, the terms of which are characterized in Proposition 1.

(ii) In the social optimum, the planner lets φ̄ proportion of matches to use a noncompete
clause but with a lower duration according to formula (28) in Proposition 3.

The exogenous-selection economy characterized above does not capture the variation of non-
compete prevalence across different enforceability regimes. The baseline economy, which I re-
fer here as the endogenous-selection version, is parameterized exactly to capture the selection
effect that is prominent in the data.

The two alternative specifications are useful for two purposes. First, both economies isolate
the selection effect in the extensive margin from the duration setting in the intensive margin,
which are otherwise entangled in the benchmark model. Second, they help to illustrate and
isolate the role of the contracting costs in shaping the optimal policy and the welfare out-
comes. Given that the matches selecting into noncompete contracts do not incur any costs, i.e.,
E[κ|κ≤ κ̄] = 0, the costs on their own do not affect the welfare number.

I recalibrate the model and report the parameter values in Table C.I. The change in
the contracting cost distribution leads to recalibration of the investment cost function in
the no-selection and exogenous-selection economies, but the reminders of the parameters
from the endogenous-selection economy are unchanged. Since the matches do not incur
any costs for signing noncompete contracts, i.e., E[κ|κ≤ κ̄] = 0, the payoff for doing
so λp

(
θ̄n−1

)(
1−F

(
θ̄n
))
− 1
jc
E[κ|κ≤ κ̄] is higher. Therefore, the investment elasticity that

matches the investment response (E[c(µn(κ))]−c(µc))/c(µc) in the data is lower, ε= 3.2.
Table C.II summarizes the policy outcomes for the two alternative specifications in com-

parison to the baseline one. The table reports two policies—implementing the social optimum
and a complete ban—in a full-enforcement regime p= 1. In the no-selection and exogenous-
selection economies, the social optimum and the duration-cap-only policy achieve the same
outcomes, precisely because there is no selection effect. Hence, the analysis for the duration-
cap-only policy is omitted.

To implement the social optimum, the no-selection and exogenous-selection economies pre-
scribe a lower duration cap than the baseline endogenous-selection model. The cap reduces
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TABLE C.II

NONCOMPETE POLICIES: ALTERNATIVE SPECIFICATION OF THE CONTRACTING COSTS.

Policy Social Optimum Ban

Specification Endogenous No Exogenous Endogenous No Exogenous
Selection Selection Selection Selection Selection Selection

Equilibrium
Duration (months), π 19.2 19.2 19.2 19.2 19.2 19.2
Prevalence, F (κ̄) 70% 100% 70% 70% 100% 70%

Contract restriction
Duration cap (months), π∗ 1.5a 0.9a 0.9a 0 0 0
Prevalence, F (κ̄∗) ≈ 0% 100% 70% 0% 0% 0%

Policy outcome
∆Job-to-job rate 1.26% 1.67% 1.17% 1.26% 1.80% 1.26%
∆Investment rate -1.19% -1.47% -1.03% -1.19% -1.65% -1.16%
Welfare gain (transition) 2.25% 2.15% 1.49% 2.25% 2.14% 1.48%

Decomposition: Total
= Reallocation 1.53% 2.27% 1.58% 1.55% 2.28% 1.58%
+ Investment -0.13% -0.12% -0.09% -0.16% -0.14% -0.10%
+ Selection 0.85% 0% 0% 0.87% 0% 0%

Note: The superscript a indicates the optimal duration cap for cost type κ = 0. While the cap depends on κ, the variation is negligible
quantitatively. The welfare gain (transition) computes the gain along the transition path after imposing the policy in the steady-state laissez-
faire equilibrium in the Florida-level enforceability regime, i.e., p = 1. The decomposition follows the order of imposing the reallocation,
investment, and selection outcomes resulting from the policy prescribed.
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FIGURE C.2.—Welfare gain: exogenous-selection economy. Note: The welfare gains are in the Florida-level en-
forceability regime, i.e., p= 1.

from 1.5 months to 0.9 months. The reason is that, with a lower investment elasticity, the social-
optimal point along the investment-reallocation trade-off in equation (28) favors capturing more
reallocational gain. With the extensive margin shut down, this shift is driven entirely by the in-
tensive margin consideration. Figure C.2(a) further illustrates this compositional change. The
total welfare gain from a duration-cap-only policy peaks at 0.9 months. This is in contrast with
the endogenous-selection economy, where the selection margin pushes the duration cap to zero
as shown in Figure 6(a).



OPTIMAL REGULATION OF NONCOMPETE CONTRACTS 13

Overall, regardless of whether the selection effect is operative, all specifications of the model
imply that the optimal duration cap is very low, to the extent that a complete ban achieves
roughly the same welfare outcome. However, the two alternative specifications imply a welfare
gain of a lower magnitude than the endogenous-selection model. For example, the welfare gain
from implementing the social optimum reduces from 2.25% to 2.15% in the no-selection model
and 1.49% in the exogenous-selection model. Unsurprisingly, the welfare decomposition shows
that the gap between the exogenous-selection economy and the baseline one comes from the
selection margin.

C.3. Free Entry

In this section, I discuss the free-entry extension in Section 5.2. To account for potential
entry channel in general equilibrium, I endogenize the arrival rate of outside opportunities by
introducing a random labor search market and costly free entry of new firms.

Consider the following extension to the model in Section 2. A measure-one of employed
workers search on-the-job, and a measure-one of ex-ante identical entrants post vacancies.
Each entrant decides to post v vacancies by incurring a cost K(v)Z , which is proportional to
the aggregate productivity Z . The job-posting cost function K(v) is increasing, differential,
and convex in v. Suppose that the workers and the vacancies are matched with a Cobb-Douglas
meeting technology λ(v) = λ011−ωvω , where the entry congestion parameter ω ∈ [0,1]. Thus,
the arrival rate of outside matches for employed workers is λ(v), and the vacancy filling rate
for a posted job is λ(v)/v. Upon being matched to a worker of productivity z, the entrant match
draws quality θ from a distribution with cumulative density function F (θ).

The free entry condition is such that the marginal value of posting one additional vacancy
equals the marginal cost. In steady state, this condition is

λ(v)

v

∫∫ {∫ ∞
θ̄c

[Jc(zθ)−Jc(z)]dF (θ)1{i(κ)=c}+

[
p

∫ ∞
θ̄n

[
Jn(zθ,κ)−Jn

(
zθ̄n,κ

)]
dF (θ)

+(1−p)
∫ ∞
θ̄c

[Jn(zθ,κ)−Jn(z,κ)]dF (θ)

]
1{i(κ)=n}

}
dG(z,κ)≤K ′(v)Z, (C.1)

which holds with strict equality if the vacancy posting is positive, v > 0.

Transition path. Relative to the fixed entry economy, the free-entry economy here features
an aggregate state, the amount of vacancies v posted. This state affects the decisions of incum-
bent matches through the arrival rate of outside offers workers receive. In the expression of the
joint value functions, one modification is made: the arrival rate λ is replaced by λ(v). Before
studying the policy outcomes, I first show that the economy exhibits simple transition dynamics
after a policy change.

LEMMA C.3: Consider the steady state of the laissez-faire equilibrium in the free-entry
economy. After imposing a noncompete regulation, the vacancy posting v jumps immediately
to the new steady-state level. Correspondingly, the contract choices {I(κ),π} and on-the-job
investments {µc,µn(κ)} also jump immediately to their new steady-state levels. However, the
distribution of matches G(z,κ,t) converges slowly to the new steady-state one.

PROOF: The proof follows a guess-and-verify method. I first guess that the entry decision
v immediately adjusts to the new steady-state level. Given this guess, Lemma 2 holds. That is,
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TABLE C.III

RECALIBRATED PARAMETERS FOR THE ENTRY CHANNEL.

Specification Fixed Entry Free Entry

Matching level λ0 0.14 0.14
Entrant congestion ω 0 1
Vacancy posting cost k 0 0.038

the contract choices {I(κ),π} and on-the-job investments {µc,µn(κ)} also jump to their new
steady-state levels. At time t, the value of making a successful match for an entrant is∫∫ {∫ ∞

θ̄c
[Jc(zθ)−Jc(z)]dF (θ)1{i(κ)=c}+

[
p

∫ ∞
θ̄n

[
Jn(zθ,κ)−Jn

(
zθ̄n,κ

)]
dF (θ)

+(1−p)
∫ ∞
θ̄c

[Jn(zθ,κ)−Jn(z,κ)]dF (θ)

]
1{i(κ)=n}

}
dG(z,κ,t)

can be calculated according to{∫ ∞
1

(θ−1)dF (θ)jc(1−Φ(κ̄))

+

[
p

∫ ∞
θ̄n

(
θ−θ̄n

)
dF (θ)+(1−p)

∫ ∞
1

(θ−1)dF (θ)

]∫ κ̄

0

jn(κ)φ(κ)

}
Zt,

which is proportional to the aggregate productivity Zt. The vacancy posting cost in (C.1) is
also proportional to the aggregate productivity Zt. This verifies that indeed the vacancy posting
reaches its new steady state level immediately. Q.E.D.

Entry channel. This extended model nests the baseline model in Section 2 when entry is
fully congested and job posting is costless, i.e., ω = 0 and K(v) = 0. I label the baseline model
as the “fixed-entry” economy here.

For the reminder of the analysis, I consider the other extreme case absent any entry con-
gestion, i.e., ω = 1. In this case, the arrival rate of outside opportunity is λ(v) = λ0v, and the
vacancy filling rate is constant λ0. This economy is a suitable basis for introducing the trade-off
associated with noncompete contracts. This economy starts from the efficient turnover premise
as our baseline model: absent the interference of noncompete clauses, the economy features
efficient job-to-job reallocation. Moreover, this economy also starts from the efficient entry
premise: it features efficient entry when the entrants are competing for the workers on level
playing field with the incumbents. To see why, note that the Hosios condition holds: absent
noncompete clauses, the entrants capture the entire surplus from new matches, aligned with
their share of contribution to the creation of new matches.3 However, when we introduce en-
dogenous investment, there is underinvestment given the holdup problem. Noncompete clauses

3This corresponds to a special case of the Postel-Vinay and Robin (2002) model with endogenous entry studied by
Gautier et al. (2010).
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FIGURE C.3.—Entry channel: duration-cap-only policies. Note: The policy counterfactual is in the Florida-level
enforceability regime, i.e., p= 1.

protect and encourage investments at the expenses of distorting both the job-to-job reallocation
and the entry.

For illustration, I specify a posting cost function K(v) = k
3
v3 and pick the value of k such

that the equilibrium level of vacancy posting is normalized to v = 1 in the full-enforcement
regime. The parameters for this free-entry model are reported in Table C.III alongside the base-
line fixed-entry model. The remaining parameters reported in Table IV are unchanged.

Figure 8(b) shows the welfare gains from policies capping the noncompete duration in the
fixed-entry and free-entry models. In the free-entry model, while the intensive and extensive
margins are roughly equal to the magnitudes in the fixed-entry model, a new entry margin arises
and increases the total welfare gain. To supplement the results presented in Section 5.3, I plot
the changes in the entry rate in Figure C.3(a). Compared to the fixed arrival rate in the baseline
model, the vacancy posted and the arrival rate increase as we impose a cap on the noncompete
duration. Therefore, the job-to-job transition rate increases for two reasons: workers are more
likely to find a new opportunity, and they are more likely to take on the new opportunity.

Implications for worker welfare. As mentioned in Section 3.3, the individual agents take
the arrival rate as given and do not internalize the effects of their contracts on the aggregate
vacancy posting. As noncompete contracts make entry less profitable, entry firms post fewer
vacancies, and workers are less likely to get an outside offer. This entry margin can potentially
offset the extra compensation individual workers get from signing noncompete contracts in
partial equilibrium. One could think of this force as noncompete contracts reducing aggregate
entry and worsening overall labor market monopsony.

I use the illustrative example above to show this effect. To measure worker welfare, I use the
initial value obtained by newborn workers, i.e., the discounted stream of their lifetime wage.
Figure C.3(b) shows the change in the value for workers under noncompete clauses. In the
fixed-entry model, the worker value decreases as the noncompete duration decreases. In the
free-entry model, the worker value increases initially as the noncompete duration increases,
when the increase in the arrival rate of outside matches dominates the decrease in rent per
match.

The example above is for illustration and probably a little stark numerical. I leave a more
careful quantitative assessment for future investigation. Moreover, to analyze the distributional
effects on workers properly, the generalized three-party bargaining by Cahuc et al. (2006)
would allow more flexibility than the Postel-Vinay and Robin (2002) framework. Instead of
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the entrant capturing the full surplus from job-to-job reallocation, the entrant and the worker
split that surplus. Therefore, the generalized three-party bargaining allows the possibility that
noncompete clauses can hurt the workers in the same way they hurt entrants.

APPENDIX D: A ONE-PERIOD MODEL

This section provides a simple one-period model. This model encapsulates the essential fea-
tures of the dynamic model in Section 2 but strips away the legal enforcement and contracting
cost, hence shutting down the selection channel into noncompete arrangements. I use this sim-
ple model to discuss the role of model assumptions, show a simplified version of the results
from the dynamic model, and illustrate some additional insights.

D.1. Environment

Consider an economy in which production lasts for one period. Noncompete exclusion leads
to delays in production. If production is delayed by π ∈ [0,∞) duration, the agents discount the
production value by a factor of e−rπ .

The events occur in the following sequence. There is a worker matched to an incumbent firm.
They can undertake investment in their productivity z ∈Z by incurring cost c(z). Employment
opportunity with an entrant firm arrives with probability λ. The outside match productivity z′ =
zθ ∈Z ′, where the entrant match quality θ ∈Θ = [θm,∞) is drawn according to the cumulative
distribution function F (·). Employment and production take place. The usual assumptions in
Section 2 are retained.

DEFINITION D.1—Allocation: An allocation
(
θ̄,z
)

consists of (i) the poaching threshold θ̄
such that entrants with θ > θ̄ poach the worker, and (ii) the level of investment z.

Information. Information is asymmetric: the firms do not observe each other’s productiv-
ity. Given the information constraint, the maximum payoff the incumbent and the worker can
jointly achieve is to charge the entrant a monopoly price to poach away the worker. The contract
below implements the monopoly price.

Contract. The incumbent firm and the worker enter a contract ex ante. The firm can commit
to the contract, which delivers a promised level of utility U0 to the worker. The contract includes
(i) the initial wage payment from the firm to the worker w0, (ii) the firm’s wage bidding strategy
against the entrant, w : Z → R+, and (iii) the noncompete clause excluding the worker from
working at the entrant firm for π duration. The firm has limited liability in delivering wage
payments. Hence, the maximum wage bidding that it can commit is the entire production output
z. To summarize, the contract is denoted by C = {w0,w,π}.

When an entrant arrives, the firms and the worker play a two-stage game:
(i) Wage Bidding. The incumbent and the entrant bid for the worker in an ascending (English)

auction: the wage is raised continuously from the initial level w0 until one firm drops out.
Denote the entrant’s bidding strategy by we :Z ′→R+. If the entrant wins, i.e., we(z′)>
w(z), the worker moves to the entrant, and a second stage ensues.

(ii) Buyout. The incumbent chooses a buyout price τ :Z →R+.4 The entrant decides whether
to buy out the noncompete clause.

4Without loss of generality, I restrict the buyout price as a function of only the incumbent productivity. It is
impossible to set the price contingent on the entrant type, because no information about it is revealed other than it is
above some threshold.



OPTIMAL REGULATION OF NONCOMPETE CONTRACTS 17

Note that the buyout payment τ is chosen ex post in the buyout stage. I will show later that, even
if the contract does not specify the buyout payment τ ex ante as in Section 2, the incumbent
firm would choose the same amount ex post. Therefore, it does not matter whether the buyout
price is ex-ante stipulated or ex-post bargained.

Belief. The incumbent and entrant firm’s prior beliefs about each other’s productivity are
denoted by G(z′|z) and Ge(z|z′). If the worker is poached by the entrant, the incumbent
updates its posterior belief of the entrant’s productivity, denoted by P (z′|we(z′)>w(z)).

D.2. Equilibrium

In the buyout stage, the entrant decides to buy out if and only if τ(z) ≤ (1−e−rπ)z′. The
incumbent’s expected payoff from buyout payment is

χ(C,we,τ |z) =

∫
τ(z)1{τ(z)≤(1−e−rπ)z′}dP (z′|we(z′)≥w(z)).

In the wage bidding stage, the expected payoffs for the incumbent, the worker, and the entrant
are, respectively,

V (C,we,τ |z) =

∫
[(z−w0)1{we(z′)<w0}+(z−we(z′))1{w0<we(z′)<w(z)}

+χ(C,we,τ |z)1{we(z′)≥w(z)}]dG(z′|z)

U(C,we,τ |z) =

∫
[w01{we(z′)<w0}+w

e(z′)1{w0<we(z′)<w(z)}+w(z)1{we(z′)≥w(z)}]dG(z′|z)

V ′(C,we,τ |z′) =

∫ [
max

{
e−rπz′,z′−τ(z)

}
−w(z)

]
1{we(z′)≥w(z)}dG

e(z|z′).

The equilibrium notation is Perfect Bayesian Equilibrium.

DEFINITION D.2—Equilibrium: An equilibrium consists of strategies {C,we,τ,z} and be-
liefs {G,Ge,P} such that,

(i) The incumbent’s ex-ante contract and the investment are optimal:

max
C,z

V (C,we,τ |z)−c(z), (D.1)

subject to the PK constraint

U(C,we,τ |z) = U0; (D.2)

(ii) The entrant’s bidding strategy is optimal in the bidding stage:

max
we

V ′(C,we,τ |z′), ∀z′; (D.3)

(iii) The incumbent’s buyout price is optimal in the buyout stage:

max
τ

χ(C,we,τ |z). (D.4)
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(iv) the incumbent’s posterior belief is updated according to

P (z′|we(z′)≥w(z)) =

∫ z′

zθm

1{we(z̃′)≥w(z)}dG(z̃′|z)∫ ∞
zθm

1{we(z′)≥w(z)}dG(z′|z)
. (D.5)

Bilateral Efficiency. Given the firm’s commitment and risk-neutral preferences, the bilat-
eral efficiency result applies here. Incorporating the PK constraint (D.2) into the incumbent’s
objective (D.1), I obtain the bilateral joint payoff

J(C,we,τ |z)≡ V (C,we,τ |z)+U(C,we,τ |z) (D.6)

=

∫
[z1we(z′)<w(z)+(w(z)+χ(C,we,τ |z))1{we(z′)≥w(z)}]dG(z′|z).

LEMMA D.1—Bilateral Efficiency: The contract and the investment maximize the bilateral
joint value between the firm and the worker

max
C,z

J(C,we|z). (D.7)

D.3. Private Optimum

Building on Lemma D.1, I now solve for the equilibrium.5

PROPOSITION D.1—Private-Optimal Contract: The private-optimal allocation is charac-
terized by

θ̄ = 1+
1−F

(
θ̄
)

f
(
θ̄
) (D.8)

c′(z) = 1+
(
θ̄−1

)(
1−F

(
θ̄
))
. (D.9)

It is implemented by a contract which embeds wage bidding, w(z) = z, and a noncompete
clause subject to be bought out:

π =
1

r
log
(
θ̄
)

(D.10)

τ(z) = z
(
θ̄−1

)
. (D.11)

PROOF: Since the bidding strategy we(z′) is strictly increasing in z′, there exists a unique
poaching threshold z̄ = zθ̄ such that we

(
zθ̄
)

=w(z), ∀z. Performing a change of variable from
z′ to θ, the Bayes rule for the posterior belief (D.5) simplifies to:

P
(
θ|θ ≥ θ̄

)
=
F (θ)−F

(
θ̄
)

1−F
(
θ̄
) , ∀θ ≥ θ̄.

5Given the information asymmetry, the incumbents can obtain the maximum payoff by charging entrants a
monopoly price to poach the workers. Wage bidding and noncompete buyouts implement this outcome.
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The bidding process reveals the entrant match quality θ only up to the poaching threshold.
Given that no information revelation occurs to allow screening in the buyout stage, the buy-
out menu bunches to a single price.6 The incumbent’s problem (D.4) of choosing the buy-
out price τ(z) is equivalent to choosing a buyout threshold denoted by θ0, which satisfies
τ(z) = (1−e−rπ)zθ0. Since the incumbent can at least charge a buyout price such that the en-
trant at the poaching threshold would be indifferent, without loss of generality, I restrict the
buyout threshold to be above the poaching threshold,

θ0 = argmax
θ≥θ̄

(1−F (θ))θ.

At the poaching threshold, the wage bidding satisfies w(z) = we
(
zθ̄
)

= e−rπzθ̄. The latter
equality is obtained from (D.3). Substituting into the bilateral joint value in (D.6):

F
(
θ̄
)
z+
(
1−F

(
θ̄
))
e−rπzθ̄+(1−F (θ0))

(
1−e−rπ

)
zθ0 ≤ [F (θ0)+(1−F (θ0))θ0]z.

This inequality follows from two relations:
(
1−F

(
θ̄
))
θ̄ ≤ (1−F (θ0))θ0 and F

(
θ̄
)
≤ F (θ0).

The maximum of the left-hand side is obtained when θ0 = θ̄, which can be ensured by con-
tracting the incumbent firm’s bidding strategy as w(z) = e−rπzθ̄. Since the incumbent firm has
limited liability, i.e., e−rπθ̄ ≤ 1, it needs at least a noncompete duration of log

(
θ̄
)
/r. There ex-

ists potentially a continuum of payoff-equivalent Perfect Bayesian Equilibria, which all achieve
the same allocation and payoff. These equilibria are indexed by the level of noncompete du-
ration, π ∈

[
log
(
θ̄
)
/r,1

]
. The corresponding wage bidding strategies are w(z) = e−rπzθ̄ and

we(z′) = e−rπz′, ∀z′ ≤ zθ̄, and buyout price is τ(z) = (1−e−rπ)zθ̄. In reality, firms can have
problems enforcing the clauses if the duration is excessively long. Therefore, I select the con-
tract with the minimum duration and the maximum wage bidding.

Finally, I take the first-order condition with respect to z in (D.7) and obtain (D.9). Q.E.D.

Proposition D.1 is a one-period version of Proposition 1 in Section 3.1 and captures the key
intuitions behind the results. The poaching threshold equation (D.8) is identical to equation
(19). These equations are driven by the exact same consideration. In turn, the noncompete du-
ration equation (D.10) is identical to one in Proposition 1 . Since the one-shot economy removes
the dynamics, the investment equation (D.9) and the buyout price in (D.11) are simplified ver-
sions of the dynamic ones.

Discussion: firm commitment. The discussion above illustrates that it is not essential to
contract on the amount of buyout payment ex ante nor to have the incumbent firm commit to it.
The same result holds when the payment is determined through ex-post bargaining. However,
it is essential that the firm commits to the long-term wage contract, which ensures bilateral
efficiency. If, to the contrary, the incumbent cannot commit at all, it maximizes its own payoff
when bidding for the worker

max
θ̄

∫ θ̄

0

[
1−e−rπθ

]
dF (θ)+

(
1−F

(
θ̄
))
e−rπθ̄.

6As in Aghion and Bolton (1987), information friction is crucial here to prevent ex-post efficient renegotiation and
generate mobility distortion. This is in contrast with Spier and Whinston (1995) (with unverifiable information) and
Segal and Whinston (2000) where ex-post renegotiation can take place.
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The optimality condition with respect to the poaching threshold here is θ̄−π
(
1−F

(
θ̄
))
/f
(
θ̄
)

=
1. Comparing to equation (D.8), it implies that, as long as π < 1, the poaching threshold is be-
low the level with commitment. Since the contract is no longer bilateral efficient, disagreement
occurs: the firm prefers a longer duration while the worker prefers a shorter one.

D.4. Social Optimum

As in Section 3.4, to characterize the social optimum, I consider a planner who designs
the noncompete contract but leaves the investment decisions in the hands of the firm. This
problem is equivalent to one where the planner chooses the allocation subject to the constraint
that incentivizing firm investment inevitably generates distortions in reallocation. Formally, the
planner’s problem can be stated as

max
θ̄,z

z

[
1+

∫ ∞
θ̄

(θ−1)dF (θ)

]
−c(z)

subject to the investment incentive in (D.9).

PROPOSITION D.2—Social-Optimal Contract: In the social-optimal allocation, the poach-
ing threshold is characterized by

θ̄∗ = 1+
ε∆
(
θ̄∗
)

ε∆
(
θ̄∗
)
+1

1−F
(
θ̄∗
)

f
(
θ̄∗
) , (D.12)

where the investment elasticity ε≡ c′(z)
c′′(z)z and ∆

(
θ̄
)
≡

∫∞
θ̄ (θ−θ̄)dF (θ)

1+(θ̄−1)(1−F(θ̄))
.7 The corresponding

investment z∗ satisfies equation (D.9).

PROOF: Differentiating the planner’s objective in with respect to θ̄ and accounting for how
the investment z responds to θ̄:[

1+

∫ ∞
θ̄

(θ−1)dF (θ)−c′(z)
]
∂z

∂θ̄
= z
(
θ̄−1

)
f
(
θ̄
)
.

Substituting equation (D.9) into the equation above:∫ ∞
θ̄

(
θ−θ̄

)
dF (θ)

∂z

∂θ̄
= z
(
θ̄−1

)
f
(
θ̄
)
. (D.13)

Differentiating the investment incentive condition (D.9) with respect to θ̄:

∂z

∂θ̄
=

1

c′′(z)

[
1−F

(
θ̄
)
−
(
θ̄−1

)
f
(
θ̄
)]

= ε
z

1+
(
θ̄−1

)(
1−F

(
θ̄
))[1−F (θ̄)−(θ̄−1

)
f
(
θ̄
)]
.

(D.14)
Combining equations (D.13) and (D.14), I obtain

ε

∫ ∞
θ̄

(
θ−θ̄

)
dF (θ)

1+
(
θ̄−1

)(
1−F

(
θ̄
))[1−F (θ̄)−(θ̄−1

)
f
(
θ̄
)]

=
(
θ̄−1

)
f
(
θ̄
)
,

7For illustration, I specify the same investment cost function as in Section 5.1, c(z) = ϕ

1+1/ε
z1+ 1

ε .
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from which I obtain the optimality condition (D.12). Q.E.D.

Similarly, Proposition D.2 is aligned with Proposition 3 in Section 3.4. The social-optimal
poaching threshold characterized in equation (D.12) is identical to one in equation (28), except
the wedge term ∆

(
θ̄
)

is a simplified one-period expression of the dynamic one. The social
optimum can be implemented by a duration cap π∗ = 1

r
log
(
θ̄∗
)
.

D.5. Noncompete Exclusion and “Damaged Goods"

In the model in Section 2, entrant firms always fully buy out noncompete, and, therefore,
exclusion never takes place in equilibrium. This section provides an extension by introducing
two features: (i) additional business stealing by entrants; and (ii) knowledge depreciation dur-
ing the noncompete period. I show that in this extension the equilibrium contract features a
continuum buyout menu to screen the entrant type. I use the simple one-period model to build
the extension, but the insights would also apply to the dynamic model.

Suppose that, when the worker departs to join an entrant, there is an additional business
stealing inflicted upon the incumbent employer. Specifically, the incumbent firm not only loses
worker production z but also suffers (additional) stolen business νz, where ν ≥ 0.During the
noncompete exclusion, the worker’s knowledge about the incumbent firm depreciates at rate
γ ≥ 0 over time, and the amount of stolen business declines. By enforcing the noncompete
clause for π̃ ≤ π duration, the amount of stolen business reduces to e−γπ̃νz. Adjusting for the
time delay, the present value of this stolen business is e−(r+γ)π̃νz. Taken together, the surplus
of reallocating the worker from the incumbent to the entrant is

R(θ,π̃)≡
(
e−rπ̃θ−1−e−(r+γ)π̃ν

)
z.

In the absence of business stealing ν = 0 and the knowledge depreciation γ = 0, the extended
model nests the baseline one in Section D.1.

ASSUMPTION D.1—Monotone Hazard Rate: The hazard rate f(θ)

1−F (θ)
is increasing in θ.

ASSUMPTION D.2—Log-Submodularity: The rent of worker reallocation R(θ,π̃) is log-
submodular in the entrant match quality θ and the noncompete duration enforced π̃:

∂2log(R(θ,π̃))

∂θ∂π̃
< 0, ∀θ,π̃ ≥ 0.

Assumption D.1 is a stronger assumption than the regulatory condition (34) in the benchmark
model. Assumptions D.1 and D.2 are necessary for price discrimination to be profitable for
the incumbent employers (see Anderson and Dana (2009)).8 It breaks the bunching result in
Proposition 1 and leads to separation. This assumption holds with sufficiently large ν and γ. In
fact, it requires that γν > r. Proposition D.1 is modified to:

8Note that the incumbent has “ownership” in the worker’s future employment during the stipulated noncompete
period of length π, and the “quantity” purchased by the entrant is π−π̃. Assumption D.2 can be equivalently stated as
the rent being log-supermodular in the entrant quality θ and the “quality” purchased π−π̃, as formulated by Anderson
and Dana (2009).
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PROPOSITION D.3: Under Assumptions D.1 and D.2, in the private-optimal allocation, the
poaching threshold θ̄ is characterized by

θ̄ =
r+γ

γ

(γ
r
ν
) r
r+γ

+
1−F

(
θ̄
)

f
(
θ̄
) . (D.15)

The corresponding noncompete duration π still specifies equation (D.10). The buyout menu
features a continuum price-quantity options, depending on the duration the entrant wants to
buy out. The entrant firms that poach the worker buy out to reduce the exclusion period to

π̃(θ) = max

{
1

γ

[
log

(
r+γ

r
ν

)
−log

(
θ−1−F (θ)

f(θ)

)]
,0

}
, ∀θ ≥ θ̄. (D.16)

Thus, threshold entrants are subject to some exclusion, π̃
(
θ̄
)

= 1
r+γ

log
(
γ

r
ν
)
> 0.

PROOF: The steps follow the proof for Proposition 1 in Section A.2. The binding IR con-
straint at the poaching threshold θ̄ implies that the corresponding buyout payment is

τ
(
π̃
(
θ̄
))

=R
(
θ̄,π̃
(
θ̄
))
.

Using the Envelope condition for the IC constraint, I obtain the buyout payment for θ ≥ θ̄:

τ(π̃(θ)) =R(θ,π̃(θ))−
∫ θ

θ̄

Rθ

(
θ̃,π̃
(
θ̃
))
dθ̃.

The problem of maximizing expected buyout revenue becomes

max
π̃(θ),θ̄

∫ ∞
θ̄

[
R(θ,π̃(θ))−

∫ θ

θ̄

Rθ

(
θ̃,π̃
(
θ̃
))
dθ̃

]
dF (θ)

= max
π̃(θ),θ̄

∫ ∞
θ̄

[
R(θ,π̃(θ))−1−F (θ)

f(θ)
Rθ(θ,π̃(θ))

]
dF (θ).

The first-order conditions with respect to π̃(θ) and θ̄ are, respectively,

Rπ̃(θ,π̃(θ))−1−F (θ)

f(θ)
Rθπ̃(θ,π̃(θ))≥ 0 with “ = ” if π̃(θ)> 0, ∀θ ≥ θ̄ (D.17)

R
(
θ̄,π̃
(
θ̄
))
−

1−F
(
θ̄
)

f
(
θ̄
) Rθ

(
θ̄,π̃
(
θ̄
))

= 0. (D.18)

Given Assumption D.2,

∂2log(R(θ,π̃))

∂θ∂π̃
=
Rθπ̃(θ,π̃)R(θ,π̃)−Rθ(θ,π̃)Rπ̃(θ,π̃)

R(θ,π̃)
< 0,

which implies γνe−(r+γ)π > r, ∀π > 0. Thus, this assumption requires that γν > r.
Further, equation (D.17) holds with equality, and I obtain the entrant’s buyout decision in

equation (D.16). Given Assumptions D.1, θ− 1−F (θ)

f(θ)
is strictly increasing in θ; therefore, π̃(θ)

is decreasing in θ. Higher type entrants buy out more noncompete duration. Combining equa-
tion (D.17) with equation (D.18), I obtain the poaching threshold equation (D.15).

Q.E.D.
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The contract in Proposition D.3 features a continuum buyout menu, in contrast to the single
buyout price in the baseline model. Noncompete is enforced in equilibrium to price discriminate
against less productive entrant firms, whereas in the baseline model noncompete is always fully
bought out and never enforced.

This extension reconciles the model with selective noncompete enforcement observed in ac-
tual practices. It also rationalizes instances of more complex arrangements such as the one
shown in Figure F.3 which specifies a two-part buyout menu. More broadly, noncompete
enforcement can be likened to the “damaged goods” phenomenon in industrial organization
where a monopolist intentionally damages goods to achieve price discrimination (Deneckere
and McAfee (1996)). In this setting, the incumbent firm as the monopolist selectively and par-
tially enforces the noncompete clause to create a damaged version of worker human capital to
achieve price discrimination against entrant firms.
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