Repurchase Options in the Market for Lemons

Saki Bigio ${ }^{1}$ Liyan Shi ${ }^{2}$

${ }^{1}$ UCLA
${ }^{2}$ EIEF

Introduction

Motivation

- Modern financial contracts: Repo | Collateralized Debt | Bridge Loans | Factoring \| Discounting
- also early contracts: Pawning | Pignus
- All have embedded repurchase option
- Why repurchase collateral? Why not simply sell the asset?
- argue natural response to adverse selection: prevents market unraveling
- Contribution:
- characterize nature of these contracts in market environment
- no commitment to a security design ex-ante

Motivating Example

- Investment opportunity w/20\% return

Motivating Example

- Investment opportunity w/20\% return

Collateral	Value			
Low Quality	$\$ 40$			
High Quality	$\$ 80$			
	Purchase Price	Repurchase Price	Average Funds Lent	Added Value
Sale Repo	$\$ 40$	∞	$\$ 20$	$\$ 4$

Motivating Example

- Investment opportunity w/20\% return

Collateral	Value			
Low Quality	$\$ 40$			
High Quality	$\$ 80$			
	Purchase	Repurchase	Average	Added Value
	Price	Price	Funds Lent	
Sale	$\$ 40$	∞	$\$ 20$	$\$ 4$
Repo	$\$ 50$	$\$ 60$	$\$ 50$	$\$ 10$

Motivating Example

- What is the nature of market equilibrium?
- what contracts survive?
$>$ is the equilibrium efficient?

DETAILS

Environment

- Trade motive: liquidity need + common valuation
- Contract: asset sale + repurchase option
- Modern treatment:
- Netzer-Scheuer (2014) timing: allow contract withdrawal
- Miyazaki-Wilson-Spence equilibrium notion

DETAILS

Environment

- Trade motive: liquidity need + common valuation
- Contract: asset sale + repurchase option
- Modern treatment:
- Netzer-Scheuer (2014) timing: allow contract withdrawal
- Miyazaki-Wilson-Spence equilibrium notion

Results

- Unique pooling equilibrium of ALL assets
- resolves: adverse selection
- closed form for any continuous distribution
- Constrained inefficient outcome
- optimal repo contract = security design solution
- competition: leads to cream skimming
- When adverse selection under asset sales high, repo dominates outright sales
- trade-off: increase participation vs. cream skimming

Relation to Literature

Security Design
Demarzo-Duffie (1999), Biais-Mariotti (2005)

- paper: market outcome+no commitment to a security design

Competitive markets with adverse selection
Wilson (1977), Netzer-Scheuer (2014),
Gale (1992,1996), Guerrieri, Shimer, and Wright (2010), Guerrieri and Shimer (2014), Chang (2018)

- focus on asset sales
- paper: richer contract space leads to pooling \& improves outcomes

Micro-foundation of repo contracts

Duffie (1996), Dang, Gorton, and Holmström (2010), Monnet and Narajabad (2017), Gottardi, Maurin, and Monnet (2017), Parlatore (2019)

- result from transaction costs (exogenous or endogenous)
- paper: private information

Macro models with private information

Bernanke Gertler (1989), Eisfeldt (2004), Christiano, Motto and Rostagno (2013), Kurlat (2013), Bigio (2015)

- Macro models: e.g. costly-state verification (Townsend, 1979) or Akerlof (1970)
- paper: closed form, portable to macro

The Environment

Two periods: $t=1,2$

No discounting
Risk neutral

Agents

Borrowers continuum

- $t=1$: endowed $\mathrm{w} /$
- an indivisible (collateral) asset
- illiquid investment project
- $t=2$: payouts:
- asset dividend $\lambda \in \Lambda \equiv[\underline{\lambda}, \bar{\lambda}] \sim F(\cdot)$
- project gross payoff $(1+r) \cdot x$
- investment $x, r>0$

Lenders

- indexed by $j \in \mathcal{J}$

Agents

Borrowers continuum

- $t=1$: endowed $\mathrm{w} /$
- an indivisible (collateral) asset
- illiquid investment project
- $t=2$: payouts:
- asset dividend $\lambda \in \Lambda \equiv[\underline{\lambda}, \bar{\lambda}] \sim F(\cdot)$
- project gross payoff $(1+r) \cdot x$
- investment $x, r>0$

Lenders

- indexed by $j \in \mathcal{J}$

Information asymmetry

- λ borrower private info

Repo Contracts

Specify two prices

$$
p=\left\{p_{s}, p_{r}\right\} \in[\underline{\lambda}, \bar{\lambda}] \times[\underline{\lambda}, \bar{\lambda}]
$$

- $t=1$: sales price p_{s} for asset
- $t=2$: repurchase price p_{r} to repossess asset

Repo Contracts

Specify two prices

$$
p=\left\{p_{s}, p_{r}\right\} \in[\underline{\lambda}, \bar{\lambda}] \times[\underline{\lambda}, \bar{\lambda}] .
$$

- $t=1$: sales price p_{s} for asset
- $t=2$: repurchase price p_{r} to repossess asset

Borrower repurchase option

- borrower can default
- lender commits to return asset if paid
- outright asset sales: special case ($p_{r}=\bar{\lambda}$)

Repo Market

Stage 1: Each lender offers a contract

- The set of offered contracts, observed by all

$$
\mathbb{P}_{0}=\left\{p^{j}: \forall j \in \mathcal{J}\right\}
$$

Stage 2: Contract withdrawal

- Remaining contracts:

$$
\mathbb{P}=\left\{p^{j} \in \mathbb{P}_{0}: I^{j}=1, \forall j \in \mathcal{J}\right\}
$$

where $I^{j}=1$: not withdrawn

Stage 3:

- Borrowers: choose p among \mathbb{P} or opt out

Agents' Problems

Borrower

$$
\max \{0, v(\lambda)\}
$$

where

$$
v(\lambda)=\max _{p \in \mathbb{P}}\{(1+r) p_{s}-\underbrace{\min \left\{\lambda, p_{r}\right\}}_{\text {default? }}\}
$$

Agents' Problems

Borrower

$$
\max \{0, v(\lambda)\}
$$

where

$$
v(\lambda)=\max _{p \in \mathbb{P}}\{(1+r) p_{s}-\underbrace{\min \left\{\lambda, p_{r}\right\}}_{\text {default? }}\}
$$

Lender

$$
\Pi^{j}\left(p^{j}, \mathbb{P}^{-j}, \mathbb{P}_{0}^{-j}\right)=\max \{\int \min \left\{\lambda, p_{r}^{j}\right\} \underbrace{d \Gamma\left(\lambda \mid p^{j}, \mathbb{P}^{-j} \cup p^{j}\right)}_{\text {distribution of quality }}-p_{s}^{j}, 0\}
$$

where

$$
\mathbb{P}^{-j}=\left\{p^{k} \in \mathbb{P}_{0}: I^{k}=1, \forall k \in \mathcal{J} / j\right\}
$$

Optimal Borrower Strategy

Lemma 1. Full Participation and Partial Default

1. [Full participation] All borrowers sign a repo contract
2. [Default threshold] \exists ! threshold $\lambda_{d} \leq \bar{\lambda}$ s.t. all lower quality assets default

Borrower Contract Choice

Two contracts (wlog):

- Highest sales price \& highest non-default value

$$
p^{d} \equiv \underset{p \in \mathbb{P}}{\operatorname{argmax}} p_{s}, \quad \boldsymbol{p}^{n} \equiv \underset{p \in \mathbb{P}}{\operatorname{argmax}}\left\{(1+r) p_{s}-p_{r}\right\}
$$

Lemma 2. Borrower Contract Choice

Defaulters:

$$
P(\lambda)=p^{d} \text { and } v(\lambda)>\bar{v}, \forall \lambda \in\left[\underline{\lambda}, \lambda_{d}\right)
$$

Non-defaulters:

$$
P(\lambda)=p^{n} \text { and } v(\lambda)=\bar{v}, \forall \lambda \in\left[\lambda_{d}, \bar{\lambda}\right]
$$

Pooling EQUILIBRIUM

Proposition 1. Pooling

Equilibrium features a pooling contract $p^{n}=p^{d}=p$ with $\left(p_{s}, p_{r}\right)$:

1. [Repurchase price]

$$
p_{r}=\lambda_{d}
$$

2. $[Z P C]$

$$
p_{s}=\mathbb{E}\left[\min \left\{\lambda, p_{r}\right\}\right]
$$

Pooling EQuilibrium

Unique Equilibrium

Proposition 2. Uniqueness

Unique equilibrium: a single zero-profit pooling contract

$$
\boldsymbol{p}^{*}=\underset{p_{s}=\mathbb{E}\left[\min \left\{\lambda, p_{r}\right\}\right]}{\operatorname{argmax}}\left\{(1+r) p_{s}-p_{r}\right\}
$$

Unique Equilibrium

Unique Equilibrium

Analytic Solution

Equilibrium Contract p^{*}

Repurchase price:

$$
p_{r}^{*}=F^{-1}\left(\frac{r}{1+r}\right)
$$

Sales price:

$$
p_{s}^{*}=\mathbb{E}\left[\min \left\{\lambda, F^{-1}\left(\frac{r}{1+r}\right)\right\}\right]
$$

Default rate:

$$
d=\frac{r}{1+r}
$$

Optimal Repo Contract Design

Mechanism Design:

$$
\max _{\left\{P(\cdot), \lambda^{p}\right\}} \int_{\underline{\lambda}}^{\lambda^{p}}\left((1+r) P_{s}(\lambda)-\min \left\{\lambda, P_{r}(\lambda)\right\}\right) d F(\lambda)
$$

s.t.

1) Incentive Compatibility
2) Participation Constraint
3) Budget Balance

CONSTRAINED EFFICIENCY: SOLUTION

Condition 1. Heterogeneity.
$(1+r) \mathbb{E}[\lambda]<\bar{\lambda}$

Proposition 4. Constrained Efficiency

Under Condition 1, the optimal contract is a full-participation pooling contract:

$$
p^{p} \in \underset{p_{s}=\mathbb{E}\left[\min \left\{\lambda, p_{r}\right\}\right]}{\operatorname{argmax}} p_{s}
$$

st:

$$
\bar{v}=(1+r) p_{s}-p_{r} \geq 0
$$

- Binding participation \& max cross-subsidization:

$$
\bar{v}^{p}=(1+r) p_{s}^{p}-p_{r}^{p}=0
$$

- Optimal security design: Demarzo-Duffie (1999) \& Biais-Mariotti (2005)

Optimal Repo Contract

SOURCE OF INEFFICIENCY

Market solution:

$$
\boldsymbol{p}^{*}=\underset{p_{s}=\mathbb{E}\left[\min \left\{\lambda, p_{r}\right\}\right]}{\operatorname{argmax}}\left\{(1+r) p_{s}-p_{r}\right\}
$$

Planner solution:

$$
p^{p} \in \underset{p_{s}=\mathbb{E}\left[\min \left\{\lambda, p_{r}\right\}\right]}{\operatorname{argmax}} p_{s}
$$

Source of inefficiency:

- Lack of separation: No
- Adverse selection: No
- Cream skimming: Yes

Repo vs. SAles: Efficiency Comparison

Repos vs. Sales: tradeoff adverse selection vs. cream skimming

Statistics

$$
Z_{a}(\lambda) \equiv \mathbb{E}[\tilde{\lambda} \mid \tilde{\lambda} \leq \lambda] \text { and } L_{a}(\lambda) \equiv \mathbb{E}[\tilde{\lambda} \mid \tilde{\lambda} \leq \lambda] F(\lambda), \forall \lambda \in \Lambda
$$

Proposition 5. Sufficient Statistics

- Repo dominates sales iff:

$$
(1+r) Z_{a}\left(L_{a}^{-1}\left(p_{s}^{*}\right)\right)<L_{a}^{-1}\left(p_{s}^{*}\right)
$$

Repo vs. SAles: Efficiency Comparison

Repurchase Price p_{r}

Uniform Distribution Example

Example. $\lambda \sim \mathrm{U}[1-\sigma, 1+\sigma], r=5 \%$

Uniform Distribution Example

Extensions \& Variations

- Lenders offer multiple contracts?
- immaterial
- Tax on repos
- immaterial with budget balance
- Lender's lack of commitment
- effect on participation
- Repo under competitive search (Guerrieri, Shimer, and Wright (2010))
- obtain unique pooling equilibrium
- enriching contract space improves outcomes
- repo always dominates asset sales

Evidence from Repo Markets

- Big haircut movements (Gorton and Metrick)
- no corresponding increase in risk
- What Drives Repo Haircuts? by Julliard, Liu, Seyedan, Todorov, Yuan
- measure of greater uncertainty I information
- collateral quality, maturity

Haircuts in the Data and Model Fit

CONCLUSION

Summary

- Repos or collateralized debt, widely used in financial markets. Why?
- Natural outcome in markets with private information
- Puzzle: large haircuts in comparison with default
- consistent with the equilibrium features here

